Search results for: Agriculture%20and%20climate%20change
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 306

Search results for: Agriculture%20and%20climate%20change

6 Biogas Yield Potential Research of Tithonia diversifolia in Mesophilic Anaerobic Fermentation in China

Authors: Duan Huanyun, Xu Rui, Li Jianchang, Yuan Yage, Wang Qiuxia, Nomana Intekhab Hadi

Abstract:

BioEnergy is an archetypal appropriate technology and alternate source of energy in rural areas of China, and can meet the basic need for cooking fuel in rural areas. The paper introduces with an alternate mean of research that can accelerate the biogas energy production. Tithonia diversifolia or the Tree marigold can be hailed as mesophillic anaerobic digestion to increase the production of more Bioenergy. Tithonia diversifolia is very native to Mexico and Central America, which can be served as ornamental plants- green manure and can prevent soil erosion. Tithonia diversifolia is widely grown and known to Asia, Africa, America and Australia as well. Nowadays, Considering China’s geographical condition it is found that Tithonia diversifolia is widely growing plant in the many tropical and subtropical regions of southern Yunnan- which can have great usage in accelerating and increasing the Bioenergy production technology. The paper discussed aiming at proving possibility that Tithonia diversifolia can be applied in biogas fermentation and its biogas production potential, the research carried experiment on Tithonia diversifolia biogas fermentation under the mesophilic condition (35 Celsius Degree). The result revealed that Tithonia diversifolia can be used as biogas fermentative material, and 6% concentration can get the best biogas production, with the TS biogas production rate 656mL/g and VS biogas production rate 801mL/g. It is well addressed that Tithonia diversifolia grows wildly in 53 Counties and 9 cities of Yunnan Province, which mainly grows in form of the road side plants, the edge of the field, countryside, forest edge, open space; of which demersum-natures can form dense monospecific beds -causing serious harm to agricultural production landforms threatening the ecological system as a potentially harmful exotic plant. There are also found the three types of invasive daisy alien plants -Eupatorium adenophorum, Eupatorium Odorata and Tithonia diversifolia in Yunnan Province of China-among them the Tithonia diversifolia is responsible for causing serious harm to agricultural production. In this paper we have designed the experimental explanation of Biogas energy production that requires anaerobic environment and some microbes; Tithonia diversifolia plant has been taken into consideration while carrying experiments and with successful resulting of generating more BioEnergy emphasizing on the practical applications of Tithonia diversifolia. This paper aims at- to find a new mechanism to provide a more scientific basis for the development of this plant herbicides in Biogas energy and to improve the utilization throughout the world as well.

Keywords: Biogas Energy Production, Tithonia diversifolia, Energy Development, Ecological Agriculture, Eupatorium adenophorum, Eupatorium odorata, Anaerobic Fermentation, Biogas Production Potential, Mesopilic Fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
5 Poultry Manure and Its Derived Biochar as a Soil Amendment for Newly Reclaimed Sandy Soils under Arid and Semi-Arid Conditions

Authors: W. S. Mohamed, A. A. Hammam

Abstract:

Sandy soils under arid and semi-arid conditions are characterized by poor physical and biochemical properties such as low water retention, rapid organic matter decomposition, low nutrients use efficiency, and limited crop productivity. Addition of organic amendments is crucial to develop soil properties and consequently enhance nutrients use efficiency and lessen organic carbon decomposition. Two years field experiments were developed to investigate the feasibility of using poultry manure and its derived biochar integrated with different levels of N fertilizer as a soil amendment for newly reclaimed sandy soils in Western Desert of El-Minia Governorate, Egypt. Results of this research revealed that poultry manure and its derived biochar addition induced pronounced effects on soil moisture content at saturation point, field capacity (FC) and consequently available water. Data showed that application of poultry manure (PM) or PM-derived biochar (PMB) in combination with inorganic N levels had caused significant changes on a range of the investigated sandy soil biochemical properties including pH, EC, mineral N, dissolved organic carbon (DOC), dissolved organic N (DON) and quotient DOC/DON. Overall, the impact of PMB on soil physical properties was detected to be superior than the impact of PM, regardless the inorganic N levels. In addition, the obtained results showed that PM and PM application had the capacity to stimulate vigorous growth, nutritional status, production levels of wheat and sorghum, and to increase soil organic matter content and N uptake and recovery compared to control. By contrast, comparing between PM and PMB at different levels of inorganic N, the obtained results showed higher relative increases in both grain and straw yields of wheat in plots treated with PM than in those treated with PMB. The interesting feature of this research is that the biochar derived from PM increased treated sandy soil organic carbon (SOC) 1.75 times more than soil treated with PM itself at the end of cropping seasons albeit double-applied amount of PM. This was attributed to the higher carbon stability of biochar treated sandy soils increasing soil persistence for carbon decomposition in comparison with PM labile carbon. It could be concluded that organic manures applied to sandy soils under arid and semi-arid conditions are subjected to high decomposition and mineralization rates through crop seasons. Biochar derived from organic wastes considers as a source of stable carbon and could be very hopeful choice for substituting easily decomposable organic manures under arid conditions. Therefore, sustainable agriculture and productivity in newly reclaimed sandy soils desire one high rate addition of biochar derived from organic manures instead of frequent addition of such organic amendments.

Keywords: Biochar, dissolved organic carbon, N-uptake, poultry, sandy soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
4 Transforming Ganges to be a Living River through Waste Water Management

Authors: P. M. Natarajan, Shambhu Kallolikar, S. Ganesh

Abstract:

By size and volume of water, Ganges River basin is the biggest among the fourteen major river basins in India. By Hindu’s faith, it is the main ‘holy river’ in this nation. But, of late, the pollution load, both domestic and industrial sources are deteriorating the surface and groundwater as well as land resources and hence the environment of the Ganges River basin is under threat. Seeing this scenario, the Indian government began to reclaim this river by two Ganges Action Plans I and II since 1986 by spending Rs. 2,747.52 crores ($457.92 million). But the result was no improvement in the water quality of the river and groundwater and environment even after almost three decades of reclamation, and hence now the New Indian Government is taking extra care to rejuvenate this river and allotted Rs. 2,037 cores ($339.50 million) in 2014 and Rs. 20,000 crores ($3,333.33 million) in 2015. The reasons for the poor water quality and stinking environment even after three decades of reclamation of the river are either no treatment/partial treatment of the sewage. Hence, now the authors are suggesting a tertiary level treatment standard of sewages of all sources and origins of the Ganges River basin and recycling the entire treated water for nondomestic uses. At 20million litres per day (MLD) capacity of each sewage treatment plant (STP), this basin needs about 2020 plants to treat the entire sewage load. Cost of the STPs is Rs. 3,43,400 million ($5,723.33 million) and the annual maintenance cost is Rs. 15,352 million ($255.87 million). The advantages of the proposed exercise are: we can produce a volume of 1,769.52 million m3 of biogas. Since biogas is energy, can be used as a fuel, for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat. It is possible to generate about 3,539.04 million kilowatt electricity per annum from the biogas generated in the process of wastewater treatment in Ganges basin. The income generation from electricity works out to Rs 10,617.12million ($176.95million). This power can be used to bridge the supply and demand gap of energy in the power hungry villages where 300million people are without electricity in India even today, and to run these STPs as well. The 664.18 million tonnes of sludge generated by the treatment plants per annum can be used in agriculture as manure with suitable amendments. By arresting the pollution load the 187.42 cubic kilometer (km3) of groundwater potential of the Ganges River basin could be protected from deterioration. Since we can recycle the sewage for non-domestic purposes, about 14.75km3 of fresh water per annum can be conserved for future use. The total value of the water saving per annum is Rs.22,11,916million ($36,865.27million) and each citizen of Ganges River basin can save Rs. 4,423.83/ ($73.73) per annum and Rs. 12.12 ($0.202) per day by recycling the treated water for nondomestic uses. Further the environment of this basin could be kept clean by arresting the foul smell as well as the 3% of greenhouse gages emission from the stinking waterways and land. These are the ways to reclaim the waterways of Ganges River basin from deterioration.

Keywords: Holy Ganges River, lifeline of India, wastewater treatment and management, making Ganges permanently holy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
3 Study on Changes of Land Use impacting the Process of Urbanization, by Using Landsat Data in African Regions: A Case Study in Kigali, Rwanda

Authors: Delphine Mukaneza, Lin Qiao, Wang Pengxin, Li Yan, Chen Yingyi

Abstract:

Human activities on land use make the land-cover gradually change or transit. In this study, we examined the use of Landsat TM data to detect the land use change of Kigali between 1987 and 2009 using remote sensing techniques and analysis of data using ENVI and ArcGIS, a GIS software. Six different categories of land use were distinguished: bare soil, built up land, wetland, water, vegetation, and others. With remote sensing techniques, we analyzed land use data in 1987, 1999 and 2009, changed areas were found and a dynamic situation of land use in Kigali city was found during the 22 years studied. According to relevant Landsat data, the research focused on land use change in accordance with the role of remote sensing in the process of urbanization. The result of the work has shown the rapid increase of built up land between 1987 and 1999 and a big decrease of vegetation caused by the rebuild of the city after the 1994 genocide, while in the period of 1999 to 2009 there was a reduction in built up land and vegetation, after the authority of Kigali city established, a Master Plan where all constructions which were not in the range of the master Plan were destroyed. Rwanda's capital, Kigali City, through the expansion of the urban area, it is increasing the internal employment rate and attracts business investors and the service sector to improve their economy, which will increase the population growth and provide a better life. The overall planning of the city of Kigali considers the environment, land use, infrastructure, cultural and socio-economic factors, the economic development and population forecast, urban development, and constraints specification. To achieve the above purpose, the Government has set for the overall planning of city Kigali, different stages of the detailed description of the design, strategy and action plan that would guide Kigali planners and members of the public in the future to have more detailed regional plans and practical measures. Thus, land use change is significantly the performance of Kigali active human area, which plays an important role for the country to take certain decisions. Another area to take into account is the natural situation of Kigali city. Agriculture in the region does not occupy a dominant position, and with the population growth and socio-economic development, the construction area will gradually rise and speed up the process of urbanization. Thus, as a developing country, Rwanda's population continues to grow and there is low rate of utilization of land, where urbanization remains low. As mentioned earlier, the 1994 genocide massacres, population growth and urbanization processes, have been the factors driving the dramatic changes in land use. The focus on further research would be on analysis of Rwanda’s natural resources, social and economic factors that could be, the driving force of land use change.

Keywords: Land use change, urbanization, Kigali City, Landsat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011
2 The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)

Authors: Tuğrul Varol, Halil Barış Özel

Abstract:

In this study which has been conducted in Akçasu Forest Range District of Devrek Forest Directorate; 3 methods (weed control with labourer power, cover removal with Hitachi F20 Excavator, and weed control with agricultural equipment mounted on a Ferguson 240S agriculture tractor) were utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with labourer force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for labourer power, 1250 TL for excavator and 1825 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed control method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term.

Keywords: Artificial regeneration, weed control, oriental beech, productivity, mechanization, man power, cost analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
1 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: Electric power consumption, LED color, LED lighting, plant factory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293