Search results for: lithium battery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 215

Search results for: lithium battery

5 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and Parabolic Trough Collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: Building integrated renewable systems, Net-Zero Energy Building, solar fraction, avoided CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611
4 The Effects of Mountain Biking as Psychomotor Instrument in Physical Education: Balance’s Evaluation

Authors: Péricles Maia Andrade, Temístocles Damasceno Silva, Hector Luiz Rodrigues Munaro

Abstract:

The school physical education is going through several changes over the years, and diversification of its content from specific interests is one of the reasons for these changes, soon, the formality in education do not have to stay out, but needs to open up the possibilities offered by the world, so the Mountain Bike, an adventure sport, offers several opportunities for intervention Its application in the school allows diverse interventions in front of the psychomotor development, besides opening possibilities for other contents, respecting the previous experiences of the students in their common environment. The choice of theme was due to affinity with the practice and experience of the Mountain Bike at different levels. Both competitive as recreational, professional standard and amateur, focus as principle the bases of the Cycling, coupled with the inclusion in the Centre for Studies in Management of Sport and Leisure and of the Southwest Bahia State University and the preview of the modality's potential to help the children’s psychomotor development. The goal of this research was to demonstrate like a pilot project the effects of the Mountain Bike as psychomotor instrument in physical education at one of the psychomotor valences, Balance, evaluating Immobility, Static Balance and Dynamic Balance. The methodology used Fonseca’s Psychomotor Battery in 10 students (n=10) of a brazilian public primary’s school, with ages between 9 and 11 years old to use the Mountain Biking contents. The balance’s skills dichotomized in Regular and Good. Regarding the variable Immobility, in the initial test, regardless of gender, 70% (n = 7) were considered Regular. After four months of activity, the Good profile, which had only 30% (n = 3) of the sample, evolved to 60% (n = 6). As in Static and Dynamic Balance there was an increase of 30% (n = 3) and 50% (n = 5) respectively for Good. Between genders, female evolution was better for Good in Immobility and in Static Equilibrium. Already the male evolution was better observed in the Dynamic Equilibrium, with 66.7% (n = 4) for Good. Respecting the particularities of the motor development, an indication of the positive effects of the MTB for the evolution in the balance perceived, necessitating studies with greater sampling.

Keywords: Psychomotricity, balance, mountain biking, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
3 Exercise and Cognitive Function: Time Course of the Effects

Authors: Simon B. Cooper, Stephan Bandelow, Maria L. Nute, John G. Morris, Mary E. Nevill

Abstract:

Previous research has indicated a variable effect of exercise on adolescents’ cognitive function. However, comparisons between studies are difficult to make due to differences in: the mode, intensity and duration of exercise employed; the components of cognitive function measured (and the tests used to assess them); and the timing of the cognitive function tests in relation to the exercise. Therefore, the aim of the present study was to assess the time course (10 and 60min post-exercise) of the effects of 15min intermittent exercise on cognitive function in adolescents. 45 adolescents were recruited to participate in the study and completed two main trials (exercise and resting) in a counterbalanced crossover design. Participants completed 15min of intermittent exercise (in cycles of 1 min exercise, 30s rest). A battery of computer based cognitive function tests (Stroop test, Sternberg paradigm and visual search test) were completed 30 min pre- and 10 and 60min post-exercise (to assess attention, working memory and perception respectively).The findings of the present study indicate that on the baseline level of the Stroop test, 10min following exercise response times were slower than at any other time point on either trial (trial by session time interaction, p = 0.0308). However, this slowing of responses also tended to produce enhanced accuracy 10min post-exercise on the baseline level of the Stroop test (trial by session time interaction, p = 0.0780). Similarly, on the complex level of the visual search test there was a slowing of response times 10 min post-exercise (trial by session time interaction, p = 0.0199). However, this was not coupled with an improvement in accuracy (trial by session time interaction, p = 0.2349). The mid-morning bout of exercise did not affect response times or accuracy across the morning on the Sternberg paradigm. In conclusion, the findings of the present study suggest an equivocal effect of exercise on adolescents' cognitive function. The mid-morning bout of exercise appears to cause a speed-accuracy trade off immediately following exercise on the Stroop test (participants become slower but more accurate), whilst slowing response times on the visual search test and having no effect on performance on the Sternberg paradigm. Furthermore, this work highlights the importance of the timing of the cognitive function tests relative to the exercise and the components of cognitive function examined in future studies. 

Keywords: Adolescents, cognitive function, exercise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3134
2 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities

Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny

Abstract:

From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.

Keywords: Sustainability, Electric, Bus, Noise, GreenCharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
1 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car

Authors: Erik Vassøy Olsen, Hirpa G. Lemu

Abstract:

Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat racecar they have designed and built. Design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the competition requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm, so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.

Keywords: Composite material, formula student, ion racing, monocoque design, structural equivalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6213