Search results for: High lift devices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6546

Search results for: High lift devices

6 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge

Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas

Abstract:

Compressed natural gas (CNG) is primarily composed of methane (CH4), and has a lower carbon to hydrogen ratio than other hydrocarbon fuels such as gasoline (C8H18) and diesel (C12H23). Consequently, it has the potential to reduce CO2 emissions compared to conventional fuels. Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels, its main component, CH4, burns at a slower rate compared to the conventional fuels. A higher pressure and leaner cylinder environment will unravel the slow burn characteristic of CH4. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful a CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJI, which contains small orifices that connect the pre-chamber to the main chamber, providing the right mixture of fuel and air has been identified as a key challenge due to the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem of scavenging which contributed to the factors that reduces the TJI performance. Combustion residual gases such as CO2, CO and NOx from the previous combustion cycle dilute the pre-chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By supplying air into the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of the combustion. An investigation of the 3D combustion characteristics of a CNG-fueled SI engine using a direct injection fuelling strategy employing an air channel in the prechamber is presented in this paper. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 revolutions per minute (rpm), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as a baseline. With a validated baseline engine simulation, the settings were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the study of (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and conventional  spark plug ignition. In conclusion, the active pre-chamber with an air channel demonstrated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.

Keywords: Turbulent Jet Ignition, Active Air Control Turbulent Jet Ignition, Pre-chamber ignition system, Active and Passive Pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170
5 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: Autonomous surveillance, Bayesian reasoning, decision-support, interventions, patterns-of-life, predictive analytics, predictive insights.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
4 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland

Authors: Sotirios Raptis

Abstract:

Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found  that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.

Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 458
3 The Influence of Fashion Bloggers on the Pre-Purchase Decision for Online Fashion Products among Generation Y Female Malaysian Consumers

Authors: Mohd Zaimmudin Mohd Zain, Patsy Perry, Lee Quinn

Abstract:

This study explores how fashion consumers are influenced by fashion bloggers towards pre-purchase decision for online fashion products in a non-Western context. Malaysians rank among the world’s most avid online shoppers, with apparel the third most popular purchase category. However, extant research on fashion blogging focuses on the developed Western market context. Numerous international fashion retailers have entered the Malaysian market from luxury to fast fashion segments of the market; however Malaysian fashion consumers must balance religious and social norms for modesty with their dress style and adoption of fashion trends. Consumers increasingly mix and match Islamic and Western elements of dress to create new styles enabling them to follow Western fashion trends whilst paying respect to social and religious norms. Social media have revolutionised the way that consumers can search for and find information about fashion products. For online fashion brands with no physical presence, social media provide a means of discovery for consumers. By allowing the creation and exchange of user-generated content (UGC) online, they provide a public forum that gives individual consumers their own voices, as well as access to product information that facilitates their purchase decisions. Social media empower consumers and brands have important roles in facilitating conversations among consumers and themselves, to help consumers connect with them and one another. Fashion blogs have become an important fashion information sources. By sharing their personal style and inspiring their followers with what they wear on popular social media platforms such as Instagram, fashion bloggers have become fashion opinion leaders. By creating UGC to spread useful information to their followers, they influence the pre-purchase decision. Hence, successful Western fashion bloggers such as Chiara Ferragni may earn millions of US dollars every year, and some have created their own fashion ranges and beauty products, become judges in fashion reality shows, won awards, and collaborated with high street and luxury brands. As fashion blogging has become more established worldwide, increasing numbers of fashion bloggers have emerged from non-Western backgrounds to promote Islamic fashion styles, such as Hassanah El-Yacoubi and Dian Pelangi. This study adopts a qualitative approach using netnographic content analysis of consumer comments on two famous Malaysian fashion bloggers’ Instagram accounts during January-March 2016 and qualitative interviews with 16 Malaysian Generation Y fashion consumers during September-October 2016. Netnography adapts ethnographic techniques to the study of online communities or computer-mediated communications. Template analysis of the data involved coding comments according to the theoretical framework, which was developed from the literature review. Initial data analysis shows the strong influence of Malaysian fashion bloggers on their followers in terms of lifestyle and morals as well as fashion style. Followers were guided towards the mix and match trend of dress with Western and Islamic elements, for example, showing how vivid colours or accessories could be worked into an outfit whilst still respecting social and religious norms. The blogger’s Instagram account is a form of online community where followers can communicate and gain guidance and support from other followers, as well as from the blogger.

Keywords: Fashion bloggers, Malaysia, qualitative, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
2 Impacts of Climate Change under the Threat of Global Warming for an Agricultural Watershed of the Kangsabati River

Authors: Sujana Dhar, Asis Mazumdar

Abstract:

The effects of global warming on India vary from the submergence of low-lying islands and coastal lands to the melting of glaciers in the Indian Himalayas, threatening the volumetric flow rate of many of the most important rivers of India and South Asia. In India, such effects are projected to impact millions of lives. As a result of ongoing climate change, the climate of India has become increasingly volatile over the past several decades; this trend is expected to continue. Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. The climate change issue is part of the larger challenge of sustainable development. As a result, climate policies can be more effective when consistently embedded within broader strategies designed to make national and regional development paths more sustainable. The impact of climate variability and change, climate policy responses, and associated socio-economic development will affect the ability of countries to achieve sustainable development goals. A very well calibrated Soil and Water Assessment Tool (R2 = 0.9968, NSE = 0.91) was exercised over the Khatra sub basin of the Kangsabati River watershed in Bankura district of West Bengal, India, in order to evaluate projected parameters for agricultural activities. Evapotranspiration, Transmission Losses, Potential Evapotranspiration and Lateral Flow to reach are evaluated from the years 2041-2050 in order to generate a picture for sustainable development of the river basin and its inhabitants. India has a significant stake in scientific advancement as well as an international understanding to promote mitigation and adaptation. This requires improved scientific understanding, capacity building, networking and broad consultation processes. This paper is a commitment towards the planning, management and development of the water resources of the Kangsabati River by presenting detailed future scenarios of the Kangsabati river basin, Khatra sub basin, over the mentioned time period. India-s economy and societal infrastructures are finely tuned to the remarkable stability of the Indian monsoon, with the consequence that vulnerability to small changes in monsoon rainfall is very high. In 2002 the monsoon rains failed during July, causing profound loss of agricultural production with a drop of over 3% in India-s GDP. Neither the prolonged break in the monsoon nor the seasonal rainfall deficit was predicted. While the general features of monsoon variability and change are fairly well-documented, the causal mechanisms and the role of regional ecosystems in modulating the changes are still not clear. Current climate models are very poor at modelling the Asian monsoon: this is a challenging and critical region where the ocean, atmosphere, land surface and mountains all interact. The impact of climate change on regional ecosystems is likewise unknown. The potential for the monsoon to become more volatile has major implications for India itself and for economies worldwide. Knowledge of future variability of the monsoon system, particularly in the context of global climate change, is of great concern for regional water and food security. The major findings of this paper were that of all the chosen projected parameters, transmission losses, soil water content, potential evapotranspiration, evapotranspiration and lateral flow to reach, display an increasing trend over the time period of years 2041- 2050.

Keywords: Change, future water availability scenario, modeling, SWAT, global warming, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
1 Physiological and Pathology Demographics of Veteran Rugby Athletes: Golden Oldies Rugby Festival

Authors: Climstein Mike, Walsh Joe, John Best, Heazlewood Ian Timothy, Burke Stephen, Kettunen Jyrki, Adams Kent, DeBeliso Mark

Abstract:

Recently, the health of retired National Football League players, particularly lineman has been investigated. A number of studies have reported increased cardiometabolic risk, premature ardiovascular disease and incidence of type 2 diabetes. Rugby union players have somatotypes very similar to National Football league players which suggest that rugby players may have similar health risks. The International Golden Oldies World Rugby Festival (GORF) provided a unique opportunity to investigate the demographics of veteran rugby players. METHODOLOGIES: A cross-sectional, observational study was completed using an online web-based questionnaire that consisted of medical history and physiological measures. Data analysis was completed using a one sample t-test (<50yrs versus >50yrs) and Chi-square test. RESULTS: A total of 216 veteran rugby competitors (response rate = 6.8%) representing 10 countries, aged 35-72 yrs (mean 51.2, S.D. ±8.0), participated in the online survey. As a group, the incidence of current smokers was low at 8.8% (avg 72.4 cigs/wk) whilst the percentage consuming alcohol was high (93.1% (avg 11.2 drinks/wk). Competitors reported the following top six chronic diseases/disorders; hypertension (18.6%), arthritis (OA/RA, 11.5%), asthma (9.3%), hyperlipidemia (8.2%), diabetes (all types, 7.5%) and gout (6%), there were significant differences between groups with regard to cancer (all types) and migraines. When compared to the Australian general population (Australian Bureau of Statistics data, n=18,000), GORF competitors had a Climstein Mike, Walsh Joe (corresponding author) and Burke Stephen School of Exercise Science, Australian Catholic University, 25A Barker Road, Strathfield, Sydney, NSW, 2016, Australia (e-mail: [email protected], [email protected], [email protected]). John Best is with Orthosports, 160 Belmore Rd., Randwick, Sydney,NSW 2031, Australia (e-mail: [email protected]). Heazlewood, Ian Timothy is with School of Environmental and Life Sciences, Faculty Education, Health and Science, Charles Darwin University, Precinct Yellow Building 2, Charles Darwin University, NT 0909, Australia (e-mail: [email protected]). Kettunen Jyrki Arcada University of Applied Sciences, Jan-Magnus Janssonin aukio 1, FI-00550, Helsinki, Finland (e-mail: [email protected]). Adams Kent is with California State University Monterey Bay, Kinesiology Department, 100 Campus Center, Seaside, CA., 93955, USA (email: [email protected]). DeBeliso Mark is with Department of Physical Education and Human Performance, Southern Utah University, 351 West University Blvd, Cedar City, Utah, USA (e-mail: [email protected]). significantly lower incidence of anxiety (p<0.01), arthritis (p<0.06), depression (p<.01) however, a significantly higher incidence of diabetes (p<0.03) and hypertension (p<0.01). The GORF competitors also reported taking the following prescribed medications; antihypertensive (13%), hypolipidemics (8%), non-steroidal anti-inflammatory (6%), and anticoagulants (4%). Significant differences between groups were observed in antihypertensives, anticoagulants and hypolipidemics. There were significant (p<0.05) differences between groups (<50yrs versus >50yrs) with regard to height (180 vs 177cm), weight (97.6 vs 93.1Kg-s), BMI (30 vs 29.7kg/m2) and waist circumference (85.7 vs 93.1cm) however, there were no differences in subsequent parameters of systolic blood pressure, diastolic blood pressure, total cholesterol, HDL-C, LDL-C, triglycerides-C or fasting plasma glucose. CONCLUSIONS: This represents the first collection of demographics on this cohort. GORF participants demonstrated increased cardiometabolic risk with regard to the incidence of hypercholesterolemia, hypertension and type 2 diabetes. Preventative strategies should be developed to reduce this risk with education of these risks for future participants.

Keywords: Masters athlete, rugby union, risk factors, chronic disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403