Search results for: G. Lavanya Devi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 38

Search results for: G. Lavanya Devi

8 Computational Analysis of Cavity Effect over Aircraft Wing

Authors: P. Booma Devi, Dilip A. Shah

Abstract:

This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.

Keywords: Lift, square and rectangle dimples, enhancement of stall angle, cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
7 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
6 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
5 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: Impersonation, image registration, incrimination, object detection, threshold evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
4 Semantic Enhanced Social Media Sentiments for Stock Market Prediction

Authors: K. Nirmala Devi, V. Murali Bhaskaran

Abstract:

Traditional document representation for classification follows Bag of Words (BoW) approach to represent the term weights. The conventional method uses the Vector Space Model (VSM) to exploit the statistical information of terms in the documents and they fail to address the semantic information as well as order of the terms present in the documents. Although, the phrase based approach follows the order of the terms present in the documents rather than semantics behind the word. Therefore, a semantic concept based approach is used in this paper for enhancing the semantics by incorporating the ontology information. In this paper a novel method is proposed to forecast the intraday stock market price directional movement based on the sentiments from Twitter and money control news articles. The stock market forecasting is a very difficult and highly complicated task because it is affected by many factors such as economic conditions, political events and investor’s sentiment etc. The stock market series are generally dynamic, nonparametric, noisy and chaotic by nature. The sentiment analysis along with wisdom of crowds can automatically compute the collective intelligence of future performance in many areas like stock market, box office sales and election outcomes. The proposed method utilizes collective sentiments for stock market to predict the stock price directional movements. The collective sentiments in the above social media have powerful prediction on the stock price directional movements as up/down by using Granger Causality test.

Keywords: Bag of Words, Collective Sentiments, Ontology, Semantic relations, Sentiments, Social media, Stock Prediction, Twitter, Vector Space Model and wisdom of crowds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
3 Antioxidant Properties and Nutritive Values of Raw and Cooked Pool Barb (Puntius sophore) of Eastern Himalayas

Authors: Ch. Sarojnalini, Wahengbam Sarjubala Devi

Abstract:

Antioxidant properties and nutritive values of raw and cooked Pool barb, Puntius sophore (Hamilton-Buchanan) of Eastern Himalayas, India were determined. Antioxidant activity of the methanol extract of the raw, steamed, fried and curried Pool barb was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. In DPPH scavenging assay the IC50 value of the raw, steamed, fried and curried Pool barb was 1.66 micro-gram/ml, 16.09 micro-gram/ml, 8.99 micro-gram/ml, 0.59 micro-gram/ml whereas the IC50 of the reference ascorbic acid was 46.66miro-gram/ml. These results showed that the fish have high antioxidant activity. Protein content was found highest in raw (20.50±0.08%) and lowest in curried (18.66±0.13%). Moisture content in raw, fried and curried was 76.35±0.09, 46.27±0.14 and 57.46±0.24 respectively. Lipid content was recorded 2.46±0.14% in raw and 21.76±0.10% in curried. Ash content varied from 12.57±0.11 to 22.53±0.07%. The total amino acids varied from 36.79±0.02 and 288.43±0.12 mg/100g. Eleven essential mineral elements were found abundant in all the samples. The samples had considerable amount of Fe ranging from 152.17 to 320.39 milli-gram/100gram, Ca 902.06 to 1356.02 milli-gram/100gram, Zn 91.07 to 138.14 milli-gram/100gram, K 193.25 to 261.56 milli-gram/100gram, Mg 225.06 to 229.10 milli-gram/100gram. Ni was not detected in the curried fish. The Mg and K contents were significantly decreased in frying method; however the Fe, Cu, Ca, Co and Mn contents were increased significantly in all the cooked samples. The Mg and Na contents were significantly increased in curried sample and the Cr content was decreased significantly (p<0.05) in all the cooked samples.

Keywords: Antioxidant property, Pool barb, minerals, amino acids, proximate composition, cooking methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
2 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death

Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar

Abstract:

In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.

Keywords: Early stage prediction, heart rate variability, linear and non linear analysis, sudden cardiac death.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
1 Maternal and Child Health Care: A Study among the Rongmeis of Manipur, India

Authors: Lorho Mary Maheo, Arundhati Maibam Devi

Abstract:

Background: Maternal and child health (MCH) cares are the health services provided to mothers and children. It includes the health promotion, preventive, curative and rehabilitation health care for mothers and children. Materials and method: The present study sample comprises of 208 women within the age range 15-69 years from two remote villages of Tamenglong District in Manipur. They were randomly chosen for assessing their health as well as the child’s health adopting an interview schedule method. Results: The findings of the study revealed that majority (80%) of the women have their first conception in their first year of married life. A decadal change has been observed with regard to the last pregnancy i.e., antenatal check-up, place of delivery as well as the service provider. However, irrespective of age of the women, home delivery is still preferred though very few are locally trained. Pre- and post-delivery resting period vary depending on the busy schedule of the agricultural works as the population under study is basically agriculturist. Postnatal care remains to be traditional as they are strongly associated with cultural beliefs and practices that continue to prevail in the studied community. Breast feeding practices such as colostrums given, initiation of breastfeeding, weaning was all taken into account.  Immunization of children has not reached the expected target owing to a variety of reasons. Maternal health care also includes use of birth control measures. The health status of women would invariably improve if family planning is meaningfully adopted. Only 10.1% of the women adopted the modern birth control implying its deep-rooted value attached to the children. Based on the self-assessment report on their health treatment a good number of the respondents resorted to self-medication even to the extent of buying allopathic medicine without a doctor’s prescription. One important finding from the study is the importance attributed to the traditional health care system which is easily affordable and accessible to the villagers. Conclusion: The overall condition of maternal and child care is way behind till now as no adequate/proper health services are available.

Keywords: Antenatal, breastfeeding, child health, maternal, Tamenglong District.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951