World Academy of Science, Engineering and Technology
[Computer and Information Engineering]
Online ISSN : 1307-6892
176 A Study of Touching Characters in Degraded Gurmukhi Text
Authors: M. K. Jindal, G. S. Lehal, R. K. Sharma
Abstract:
Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper a study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis.Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text.Keywords: Character Segmentation, Middle Zone, Touching Characters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841175 Visual Object Tracking in 3D with Color Based Particle Filter
Authors: Pablo Barrera, Jose M. Canas, Vicente Matellan
Abstract:
This paper addresses the problem of determining the current 3D location of a moving object and robustly tracking it from a sequence of camera images. The approach presented here uses a particle filter and does not perform any explicit triangulation. Only the color of the object to be tracked is required, but not any precisemotion model. The observation model we have developed avoids the color filtering of the entire image. That and the Monte Carlotechniques inside the particle filter provide real time performance.Experiments with two real cameras are presented and lessons learned are commented. The approach scales easily to more than two cameras and new sensor cues.
Keywords: Monte Carlo sampling, multiple view, particle filters, visual tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931174 IVE: Virtual Humans AI Prototyping Toolkit
Authors: Cyril Brom, Zuzana Vlckova
Abstract:
IVE toolkit has been created for facilitating research,education and development in the ?eld of virtual storytelling andcomputer games. Primarily, the toolkit is intended for modellingaction selection mechanisms of virtual humans, investigating level-of-detail AI techniques for large virtual environments, and for exploringjoint behaviour and role-passing technique (Sec. V). Additionally, thetoolkit can be used as an AI middleware without any changes. Themain facility of IVE is that it serves for prototyping both the AI andvirtual worlds themselves. The purpose of this paper is to describeIVE?s features in general and to present our current work - includingan educational game - on this platform.Keywords? AI middleware, simulation, virtual world.Keywords: AI middleware, simulation, virtual world
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654173 Efficient Iris Recognition Method for Human Identification
Authors: A. Basit, M. Y. Javed, M. A. Anjum
Abstract:
In this paper, an efficient method for personal identification based on the pattern of human iris is proposed. It is composed of image acquisition, image preprocessing to make a flat iris then it is converted into eigeniris and decision is carried out using only reduction of iris in one dimension. By comparing the eigenirises it is determined whether two irises are similar. The results show that proposed method is quite effective.Keywords: Biometrics, Canny Operator, Eigeniris, Iris Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543172 Soft Real-Time Fuzzy Task Scheduling for Multiprocessor Systems
Authors: Mahdi Hamzeh, Sied Mehdi Fakhraie, Caro Lucas
Abstract:
All practical real-time scheduling algorithms in multiprocessor systems present a trade-off between their computational complexity and performance. In real-time systems, tasks have to be performed correctly and timely. Finding minimal schedule in multiprocessor systems with real-time constraints is shown to be NP-hard. Although some optimal algorithms have been employed in uni-processor systems, they fail when they are applied in multiprocessor systems. The practical scheduling algorithms in real-time systems have not deterministic response time. Deterministic timing behavior is an important parameter for system robustness analysis. The intrinsic uncertainty in dynamic real-time systems increases the difficulties of scheduling problem. To alleviate these difficulties, we have proposed a fuzzy scheduling approach to arrange real-time periodic and non-periodic tasks in multiprocessor systems. Static and dynamic optimal scheduling algorithms fail with non-critical overload. In contrast, our approach balances task loads of the processors successfully while consider starvation prevention and fairness which cause higher priority tasks have higher running probability. A simulation is conducted to evaluate the performance of the proposed approach. Experimental results have shown that the proposed fuzzy scheduler creates feasible schedules for homogeneous and heterogeneous tasks. It also and considers tasks priorities which cause higher system utilization and lowers deadline miss time. According to the results, it performs very close to optimal schedule of uni-processor systems.Keywords: Computational complexity, Deadline, Feasible scheduling, Fuzzy scheduling, Priority, Real-time multiprocessor systems, Robustness, System utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129171 Analysis of Testing and Operational Software Reliability in SRGM based on NHPP
Authors: S. Thirumurugan, D. R. Prince Williams
Abstract:
Software Reliability is one of the key factors in the software development process. Software Reliability is estimated using reliability models based on Non Homogenous Poisson Process. In most of the literature the Software Reliability is predicted only in testing phase. So it leads to wrong decision-making concept. In this paper, two Software Reliability concepts, testing and operational phase are studied in detail. Using S-Shaped Software Reliability Growth Model (SRGM) and Exponential SRGM, the testing and operational reliability values are obtained. Finally two reliability values are compared and optimal release time is investigated.Keywords: Error Detection Rate, Estimation of Parameters, Instantaneous Failure Rate, Mean Value Function, Non Homogenous Poisson Process (NHPP), Software Reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635170 Indexing and Searching of Image Data in Multimedia Databases Using Axial Projection
Authors: Khalid A. Kaabneh
Abstract:
This paper introduces and studies new indexing techniques for content-based queries in images databases. Indexing is the key to providing sophisticated, accurate and fast searches for queries in image data. This research describes a new indexing approach, which depends on linear modeling of signals, using bases for modeling. A basis is a set of chosen images, and modeling an image is a least-squares approximation of the image as a linear combination of the basis images. The coefficients of the basis images are taken together to serve as index for that image. The paper describes the implementation of the indexing scheme, and presents the findings of our extensive evaluation that was conducted to optimize (1) the choice of the basis matrix (B), and (2) the size of the index A (N). Furthermore, we compare the performance of our indexing scheme with other schemes. Our results show that our scheme has significantly higher performance.
Keywords: Axial Projection, images, indexing, multimedia database, searching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387169 An Examination of the Factors Influencing Software Development Effort
Authors: Zhizhong Jiang, Peter Naudé
Abstract:
Effective evaluation of software development effort is an important aspect of successful project management. Based on a large database with 4106 projects ever developed, this study statistically examines the factors that influence development effort. The factors found to be significant for effort are project size, average number of developers that worked on the project, type of development, development language, development platform, and the use of rapid application development. Among these factors, project size is the most critical cost driver. Unsurprisingly, this study found that the use of CASE tools does not necessarily reduce development effort, which adds support to the claim that the use of tools is subtle. As many of the current estimation models are rarely or unsuccessfully used, this study proposes a parsimonious parametric model for the prediction of effort which is both simple and more accurate than previous models.
Keywords: Development effort, function points, team size, development language, CASE tool, rapid application development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508168 DJess A Knowledge-Sharing Middleware to Deploy Distributed Inference Systems
Authors: Federico Cabitza, Bernardo Dal Seno
Abstract:
In this paper DJess is presented, a novel distributed production system that provides an infrastructure for factual and procedural knowledge sharing. DJess is a Java package that provides programmers with a lightweight middleware by which inference systems implemented in Jess and running on different nodes of a network can communicate. Communication and coordination among inference systems (agents) is achieved through the ability of each agent to transparently and asynchronously reason on inferred knowledge (facts) that might be collected and asserted by other agents on the basis of inference code (rules) that might be either local or transmitted by any node to any other node.Keywords: Knowledge-Based Systems, Expert Systems, Distributed Inference Systems, Parallel Production Systems, Ambient Intelligence, Mobile Agents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796167 Intelligent Vision System for Human-Robot Interface
Authors: Al-Amin Bhuiyan, Chang Hong Liu
Abstract:
This paper addresses the development of an intelligent vision system for human-robot interaction. The two novel contributions of this paper are 1) Detection of human faces and 2) Localizing the eye. The method is based on visual attributes of human skin colors and geometrical analysis of face skeleton. This paper introduces a spatial domain filtering method named ?Fuzzily skewed filter' which incorporates Fuzzy rules for deciding the gray level of pixels in the image in their neighborhoods and takes advantages of both the median and averaging filters. The effectiveness of the method has been justified over implementing the eye tracking commands to an entertainment robot, named ''AIBO''.Keywords: Fuzzily skewed filter, human-robot interface, rmscontrast, skin color segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433166 Generator of Hypotheses an Approach of Data Mining Based on Monotone Systems Theory
Authors: Rein Kuusik, Grete Lind
Abstract:
Generator of hypotheses is a new method for data mining. It makes possible to classify the source data automatically and produces a particular enumeration of patterns. Pattern is an expression (in a certain language) describing facts in a subset of facts. The goal is to describe the source data via patterns and/or IF...THEN rules. Used evaluation criteria are deterministic (not probabilistic). The search results are trees - form that is easy to comprehend and interpret. Generator of hypotheses uses very effective algorithm based on the theory of monotone systems (MS) named MONSA (MONotone System Algorithm).Keywords: data mining, monotone systems, pattern, rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257165 A Patricia-Tree Approach for Frequent Closed Itemsets
Authors: Moez Ben Hadj Hamida, Yahya SlimaniI
Abstract:
In this paper, we propose an adaptation of the Patricia-Tree for sparse datasets to generate non redundant rule associations. Using this adaptation, we can generate frequent closed itemsets that are more compact than frequent itemsets used in Apriori approach. This adaptation has been experimented on a set of datasets benchmarks.
Keywords: Datamining, Frequent itemsets, Frequent closeditemsets, Sparse datasets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884164 Optimizing Feature Selection for Recognizing Handwritten Arabic Characters
Authors: Mohammed Z. Khedher, Gheith A. Abandah, Ahmed M. Al-Khawaldeh
Abstract:
Recognition of characters greatly depends upon the features used. Several features of the handwritten Arabic characters are selected and discussed. An off-line recognition system based on the selected features was built. The system was trained and tested with realistic samples of handwritten Arabic characters. Evaluation of the importance and accuracy of the selected features is made. The recognition based on the selected features give average accuracies of 88% and 70% for the numbers and letters, respectively. Further improvements are achieved by using feature weights based on insights gained from the accuracies of individual features.Keywords: Arabic handwritten characters, Feature extraction, Off-line recognition, Optical character recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691163 Latent Semantic Inference for Agriculture FAQ Retrieval
Authors: Dawei Wang, Rujing Wang, Ying Li, Baozi Wei
Abstract:
FAQ system can make user find answer to the problem that puzzles them. But now the research on Chinese FAQ system is still on the theoretical stage. This paper presents an approach to semantic inference for FAQ mining. To enhance the efficiency, a small pool of the candidate question-answering pairs retrieved from the system for the follow-up work according to the concept of the agriculture domain extracted from user input .Input queries or questions are converted into four parts, the question word segment (QWS), the verb segment (VS), the concept of agricultural areas segment (CS), the auxiliary segment (AS). A semantic matching method is presented to estimate the similarity between the semantic segments of the query and the questions in the pool of the candidate. A thesaurus constructed from the HowNet, a Chinese knowledge base, is adopted for word similarity measure in the matcher. The questions are classified into eleven intension categories using predefined question stemming keywords. For FAQ mining, given a query, the question part and answer part in an FAQ question-answer pair is matched with the input query, respectively. Finally, the probabilities estimated from these two parts are integrated and used to choose the most likely answer for the input query. These approaches are experimented on an agriculture FAQ system. Experimental results indicate that the proposed approach outperformed the FAQ-Finder system in agriculture FAQ retrieval.
Keywords: FAQ, Semantic Inference, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379162 PP-FSM: Peer to Peer File Share for Multimedia
Authors: Arsalan Ali Shah, Zafar I. Malik, Shaukat Ali
Abstract:
Peer-to-Peer (P2P) is a self-organizing resource sharing network with no centralized authority or infrastructure, which makes it unpredictable and vulnerable. In this paper, we propose architecture to make the peer-to-peer network more centralized, predictable, and safer to use by implementing trust and stopping free riding.
Keywords: File Share, Free Riding, Peer-to-Peer, Trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047161 Multi-Dimensional Concerns Mining for Web Applications via Concept-Analysis
Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini
Abstract:
Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.Keywords: Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473160 An Experimental Comparison of Unsupervised Learning Techniques for Face Recognition
Authors: Dinesh Kumar, C.S. Rai, Shakti Kumar
Abstract:
Face Recognition has always been a fascinating research area. It has drawn the attention of many researchers because of its various potential applications such as security systems, entertainment, criminal identification etc. Many supervised and unsupervised learning techniques have been reported so far. Principal Component Analysis (PCA), Self Organizing Maps (SOM) and Independent Component Analysis (ICA) are the three techniques among many others as proposed by different researchers for Face Recognition, known as the unsupervised techniques. This paper proposes integration of the two techniques, SOM and PCA, for dimensionality reduction and feature selection. Simulation results show that, though, the individual techniques SOM and PCA itself give excellent performance but the combination of these two can also be utilized for face recognition. Experimental results also indicate that for the given face database and the classifier used, SOM performs better as compared to other unsupervised learning techniques. A comparison of two proposed methodologies of SOM, Local and Global processing, shows the superiority of the later but at the cost of more computational time.
Keywords: Face Recognition, Principal Component Analysis, Self Organizing Maps, Independent Component Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880159 Discovering Complex Regularities by Adaptive Self Organizing Classification
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.
Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563158 A Persian OCR System using Morphological Operators
Authors: M. Salmani Jelodar, M.J. Fadaeieslam, N. Mozayani, M. Fazeli
Abstract:
Optical Character Recognition (OCR) is a very old and of great interest in pattern recognition field. In this paper we introduce a very powerful approach to recognize Persian text. We have used morphological operators, especially Hit/Miss operator to descript each sub-word and by using a template matching approach we have tried to classify generated description. We used just one font in two different sizes to verify our approach. We achieved a very good rate, up to 99.9%.
Keywords: A Persian Optical Character Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310157 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture
Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro
Abstract:
One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779156 A New Algorithm for Cluster Initialization
Authors: Moth'd Belal. Al-Daoud
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the k-means algorithm. Solutions obtained from this technique are dependent on the initialization of cluster centers. In this article we propose a new algorithm to initialize the clusters. The proposed algorithm is based on finding a set of medians extracted from a dimension with maximum variance. The algorithm has been applied to different data sets and good results are obtained.
Keywords: clustering, k-means, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104155 Generalized Exploratory Model of Human Category Learning
Authors: Toshihiko Matsuka
Abstract:
One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385154 Sub-Image Detection Using Fast Neural Processors and Image Decomposition
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In this paper, an approach to reduce the computation steps required by fast neural networksfor the searching process is presented. The principle ofdivide and conquer strategy is applied through imagedecomposition. Each image is divided into small in sizesub-images and then each one is tested separately usinga fast neural network. The operation of fast neuralnetworks based on applying cross correlation in thefrequency domain between the input image and theweights of the hidden neurons. Compared toconventional and fast neural networks, experimentalresults show that a speed up ratio is achieved whenapplying this technique to locate human facesautomatically in cluttered scenes. Furthermore, fasterface detection is obtained by using parallel processingtechniques to test the resulting sub-images at the sametime using the same number of fast neural networks. Incontrast to using only fast neural networks, the speed upratio is increased with the size of the input image whenusing fast neural networks and image decomposition.
Keywords: Fast Neural Networks, 2D-FFT, CrossCorrelation, Image decomposition, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179153 Stochastic Learning Algorithms for Modeling Human Category Learning
Authors: Toshihiko Matsuka, James E. Corter
Abstract:
Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629152 Locating Center Points for Radial Basis Function Networks Using Instance Reduction Techniques
Authors: Rana Yousef, Khalil el Hindi
Abstract:
The behavior of Radial Basis Function (RBF) Networks greatly depends on how the center points of the basis functions are selected. In this work we investigate the use of instance reduction techniques, originally developed to reduce the storage requirements of instance based learners, for this purpose. Five Instance-Based Reduction Techniques were used to determine the set of center points, and RBF networks were trained using these sets of centers. The performance of the RBF networks is studied in terms of classification accuracy and training time. The results obtained were compared with two Radial Basis Function Networks: RBF networks that use all instances of the training set as center points (RBF-ALL) and Probabilistic Neural Networks (PNN). The former achieves high classification accuracies and the latter requires smaller training time. Results showed that RBF networks trained using sets of centers located by noise-filtering techniques (ALLKNN and ENN) rather than pure reduction techniques produce the best results in terms of classification accuracy. The results show that these networks require smaller training time than that of RBF-ALL and higher classification accuracy than that of PNN. Thus, using ALLKNN and ENN to select center points gives better combination of classification accuracy and training time. Our experiments also show that using the reduced sets to train the networks is beneficial especially in the presence of noise in the original training sets.
Keywords: Radial basis function networks, Instance-based reduction, PNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688151 Compact Binary Tree Representation of Logic Function with Enhanced Throughput
Authors: Padmanabhan Balasubramanian, C. Ardil
Abstract:
An effective approach for realizing the binary tree structure, representing a combinational logic functionality with enhanced throughput, is discussed in this paper. The optimization in maximum operating frequency was achieved through delay minimization, which in turn was possible by means of reducing the depth of the binary network. The proposed synthesis methodology has been validated by experimentation with FPGA as the target technology. Though our proposal is technology independent, yet the heuristic enables better optimization in throughput even after technology mapping for such Boolean functionality; whose reduced CNF form is associated with a lesser literal cost than its reduced DNF form at the Boolean equation level. For cases otherwise, our method converges to similar results as that of [12]. The practical results obtained for a variety of case studies demonstrate an improvement in the maximum throughput rate for Spartan IIE (XC2S50E-7FT256) and Spartan 3 (XC3S50-4PQ144) FPGA logic families by 10.49% and 13.68% respectively. With respect to the LUTs and IOBUFs required for physical implementation of the requisite non-regenerative logic functionality, the proposed method enabled savings to the tune of 44.35% and 44.67% respectively, over the existing efficient method available in literature [12].
Keywords: Binary logic tree, FPGA based design, Boolean function, Throughput rate, CNF, DNF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908150 On Face Recognition using Gabor Filters
Authors: Al-Amin Bhuiyan, Chang Hong Liu
Abstract:
Gabor-based face representation has achieved enormous success in face recognition. This paper addresses a novel algorithm for face recognition using neural networks trained by Gabor features. The system is commenced on convolving a face image with a series of Gabor filter coefficients at different scales and orientations. Two novel contributions of this paper are: scaling of rms contrast and introduction of fuzzily skewed filter. The neural network employed for face recognition is based on the multilayer perceptron (MLP) architecture with backpropagation algorithm and incorporates the convolution filter response of Gabor jet. The effectiveness of the algorithm has been justified over a face database with images captured at different illumination conditions.Keywords: Fuzzily skewed filter, Gabor filter, rms contrast, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101149 Face Recognition Using Double Dimension Reduction
Authors: M. A Anjum, M. Y. Javed, A. Basit
Abstract:
In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.
Keywords: Biometrics, DCT, Face Recognition, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492148 A New Method of Combined Classifier Design Based on Fuzzy Neural Network
Abstract:
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a novel method of designing combined classifier based on fuzzy neural network (FNN) is presented in this paper. The method employs fuzzy neural network classifiers and interclass distance (ICD) to improve recognition reliability. Experimental results show that the proposed combined classifier has high recognition rate with large variation range of SNR (success rates are over 99.9% when SNR is not lower than 5dB).Keywords: Modulation classification, combined classifier, fuzzy neural network, interclass distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224147 OCR for Script Identification of Hindi (Devnagari) Numerals using Feature Sub Selection by Means of End-Point with Neuro-Memetic Model
Authors: Banashree N. P., R. Vasanta
Abstract:
Recognition of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character depending on the type of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent. Our work focused on a technique in feature extraction i.e. global based approach using end-points information, which is extracted from images of isolated numerals. These feature vectors are fed to neuro-memetic model [18] that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. . In proposed scheme data sets are fed to neuro-memetic algorithm, which identifies the rule with highest fitness value of nearly 100 % & template associates with this rule is nothing but identified numerals. Experimentation result shows that recognition rate is 92-97 % compared to other models.Keywords: OCR, Global Feature, End-Points, Neuro-Memetic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759