Search results for: lagrange's planetary equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2081

Search results for: lagrange's planetary equation

11 Horizontal Cooperative Game Theory in Hotel Revenue Management

Authors: Ririh Rahma Ratinghayu, Jayu Pramudya, Nur Aini Masruroh, Shi-Woei Lin

Abstract:

This research studies pricing strategy in cooperative setting of hotel duopoly selling perishable product under fixed capacity constraint by using the perspective of managers. In hotel revenue management, competitor’s average room rate and occupancy rate should be taken into manager’s consideration in determining pricing strategy to generate optimum revenue. This information is not provided by business intelligence or available in competitor’s website. Thus, Information Sharing (IS) among players might result in improved performance of pricing strategy. IS is widely adopted in the logistics industry, but IS within hospitality industry has not been well-studied. This research put IS as one of cooperative game schemes, besides Mutual Price Setting (MPS) scheme. In off-peak season, hotel manager arranges pricing strategy to offer promotion package and various kinds of discounts up to 60% of full-price to attract customers. Competitor selling homogenous product will react the same, then triggers a price war. Price war which generates lower revenue may be avoided by creating collaboration in pricing strategy to optimize payoff for both players. In MPS cooperative game, players collaborate to set a room rate applied for both players. Cooperative game may avoid unfavorable players’ payoff caused by price war. Researches on horizontal cooperative game in logistics show better performance and payoff for the players, however, horizontal cooperative game in hotel revenue management has not been demonstrated. This paper aims to develop hotel revenue management models under duopoly cooperative schemes (IS & MPS), which are compared to models under non-cooperative scheme too. Each scheme has five models, Capacity Allocation Model; Demand Model; Revenue Model; Optimal Price Model; and Equilibrium Price Model. Capacity Allocation Model and Demand Model employs self-hotel and competitor’s full and discount price as predictors under non-linear relation. Optimal price is obtained by assuming revenue maximization motive. Equilibrium price is observed by interacting self-hotel’s and competitor’s optimal price under reaction equation. Equilibrium is analyzed using game theory approach. The sequence applies for three schemes. MPS Scheme differently aims to optimize total players’ payoff. The case study in which theoretical models are applied observes two hotels offering homogenous product in Indonesia during a year. The Capacity Allocation, Demand, and Revenue Models are built using multiple regression and statistically tested for validation. Case study data confirms that price behaves within demand model in a non-linear manner. IS Models can represent the actual demand and revenue data better than Non-IS Models. Furthermore, IS enables hotels to earn significantly higher revenue. Thus, duopoly hotel players in general, might have reasonable incentives to share information horizontally. During off-peak season, MPS Models are able to predict the optimal equal price for both hotels. However, Nash equilibrium may not always exist depending on actual payoff of adhering or betraying mutual agreement. To optimize performance, horizontal cooperative game may be chosen over non-cooperative game. Mathematical models can be used to detect collusion among business players. Empirical testing can be used as policy input for market regulator in preventing unethical business practices potentially harming society welfare.

Keywords: horizontal cooperative game theory, hotel revenue management, information sharing, mutual price setting

Procedia PDF Downloads 256
10 Housing Recovery in Heavily Damaged Communities in New Jersey after Hurricane Sandy

Authors: Chenyi Ma

Abstract:

Background: The second costliest hurricane in U.S. history, Sandy landed in southern New Jersey on October 29, 2012, and struck the entire state with high winds and torrential rains. The disaster killed more than 100 people, left more than 8.5 million households without power, and damaged or destroyed more than 200,000 homes across the state. Immediately after the disaster, public policy support was provided in nine coastal counties that constituted 98% of the major and severely damaged housing units in NJ overall. The programs include Individuals and Households Assistance Program, Small Business Loan Program, National Flood Insurance Program, and the Federal Emergency Management Administration (FEMA) Public Assistance Grant Program. In the most severely affected counties, additional funding was provided through Community Development Block Grant: Reconstruction, Rehabilitation, Elevation, and Mitigation Program, and Homeowner Resettlement Program. How these policies individually and as a whole impacted housing recovery across communities with different socioeconomic and demographic profiles has not yet been studied, particularly in relation to damage levels. The concept of community social vulnerability has been widely used to explain many aspects of natural disasters. Nevertheless, how communities are vulnerable has been less fully examined. Community resilience has been conceptualized as a protective factor against negative impacts from disasters, however, how community resilience buffers the effects of vulnerability is not yet known. Because housing recovery is a dynamic social and economic process that varies according to context, this study examined the path from community vulnerability and resilience to housing recovery looking at both community characteristics and policy interventions. Sample/Methods: This retrospective longitudinal case study compared a literature-identified set of pre-disaster community characteristics, the effects of multiple public policy programs, and a set of time-variant community resilience indicators to changes in housing stock (operationally defined by percent of building permits to total occupied housing units/households) between 2010 and 2014, two years before and after Hurricane Sandy. The sample consisted of 51 municipalities in the nine counties in which between 4% and 58% of housing units suffered either major or severe damage. Structural equation modeling (SEM) was used to determine the path from vulnerability to the housing recovery, via multiple public programs, separately and as a whole, and via the community resilience indicators. The spatial analytical tool ArcGIS 10.2 was used to show the spatial relations between housing recovery patterns and community vulnerability and resilience. Findings: Holding damage levels constant, communities with higher proportions of Hispanic households had significantly lower levels of housing recovery while communities with households with an adult >age 65 had significantly higher levels of the housing recovery. The contrast was partly due to the different levels of total public support the two types of the community received. Further, while the public policy programs individually mediated the negative associations between African American and female-headed households and housing recovery, communities with larger proportions of African American, female-headed and Hispanic households were “vulnerable” to lower levels of housing recovery because they lacked sufficient public program support. Even so, higher employment rates and incomes buffered vulnerability to lower housing recovery. Because housing is the "wobbly pillar" of the welfare state, the housing needs of these particular groups should be more fully addressed by disaster policy.

Keywords: community social vulnerability, community resilience, hurricane, public policy

Procedia PDF Downloads 335
9 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment

Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha

Abstract:

The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.

Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding

Procedia PDF Downloads 171
8 A Microwave Heating Model for Endothermic Reaction in the Cement Industry

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.

Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing

Procedia PDF Downloads 113
7 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 184
6 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil

Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes

Abstract:

Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.

Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey

Procedia PDF Downloads 140
5 Removing Maturational Influences from Female Youth Swimming: The Application of Corrective Adjustment Procedures

Authors: Clorinda Hogan, Shaun Abbott, Mark Halaki, Marcela Torres Catiglioni, Goshi Yamauchi, Lachlan Mitchell, James Salter, Michael Romann, Stephen Cobley

Abstract:

Introduction: Common annual age-group competition structures unintentionally introduce participation inequalities, performance (dis)advantages and selection biases due to the effect of maturational variation between youth swimmers. On this basis, there are implications for improving performance evaluation strategies. Therefore the aim was to: (1) To determine maturity timing distributions in female youth swimming; (2) quantify the relationship between maturation status and 100-m FC performance; (3) apply Maturational-based Corrective Adjustment Procedures (Mat-CAPs) for removal of maturational status performance influences. Methods: (1) Cross-sectional analysis of 663 female (10-15 years) swimmers who underwent assessment of anthropometrics (mass, height and sitting height) and estimations of maturity timing and offset. (2) 100-m front-crawl performance (seconds) was assessed at Australian regional, state, and national-level competitions between 2016-2020. To determine the relationship between maturation status and 100-m front-crawl performance, MO was plotted against 100-m FC performance time. The expected maturity status - performance relationship for females aged 10-15 years of age was obtained through a quadratic function (y = ax2 + bx + c) from unstandardized coefficients. The regression equation was subsequently used for Mat-CAPs. (3) Participants aged 10-13 years were categorised into maturity-offset categories. Maturity offset distributions for Raw (‘All’, ‘Top 50%’ & ‘Top 25%’) and Correctively Adjusted swim times were examined. Chi-square, Cramer’s V and ORs determined the occurrence of maturation biases for each age group and selection level. Results—: (1) Maturity timing distributions illustrated overrepresentation of ‘normative’ maturing swimmers (11.82 ± 0.40 years), with a descriptive shift toward the early maturing relative to the normative population. (2) A curvilinear relationship between maturity-offset and swim performance was identified (R2 = 0.53, P < 0.001) and subsequently utilised for Mat-CAPs. (3) Raw maturity offset categories identified partial maturation status skewing towards biologically older swimmers at 10/11 and 12 years, with effect magnitudes increasing in the ‘Top 50%’ and ‘25%’ of performance times. Following Mat-CAPs application, maturity offset biases were removed in similar age groups and selection levels. When adjusting performance times for maturity offset, Mat-CAPs was successful in mitigating against maturational biases until approximately 1-year post Peak Height Velocity. The overrepresentation of ‘normative’ maturing female swimmers contrasted with the substantial overrepresentation of ‘early’ maturing male swimmers found previously in 100-m front-crawl. These findings suggest early maturational timing is not advantageous in females, but findings associated with Aim 2, highlight how advanced maturational status remained beneficial to performance. Observed differences between female and male maturational biases may relate to the differential impact of physiological development during pubertal years. Females experience greater increases of fat mass and potentially differing changes in body shape which can negatively affect swim performance. Conclusions: Transient maturation status-based participation and performance advantages were apparent within a large sample of Australian female youth 100-m FC swimmers. By removing maturity status performance biases within female youth swimming, Mat-CAPs could help improve participation experiences and the accuracy of identifying genuinely skilled female youth swimmers.

Keywords: athlete development, long-term sport participation, performance evaluation, talent identification, youth competition

Procedia PDF Downloads 154
4 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions

Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer

Abstract:

The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.

Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping

Procedia PDF Downloads 183
3 Consumer Preferences for Low-Carbon Futures: A Structural Equation Model Based on the Domestic Hydrogen Acceptance Framework

Authors: Joel A. Gordon, Nazmiye Balta-Ozkan, Seyed Ali Nabavi

Abstract:

Hydrogen-fueled technologies are rapidly advancing as a critical component of the low-carbon energy transition. In countries historically reliant on natural gas for home heating, such as the UK, hydrogen may prove fundamental for decarbonizing the residential sector, alongside other technologies such as heat pumps and district heat networks. While the UK government is set to take a long-term policy decision on the role of domestic hydrogen by 2026, there are considerable uncertainties regarding consumer preferences for ‘hydrogen homes’ (i.e., hydrogen-fueled appliances for space heating, hot water, and cooking. In comparison to other hydrogen energy technologies, such as road transport applications, to date, few studies have engaged with the social acceptance aspects of the domestic hydrogen transition, resulting in a stark knowledge deficit and pronounced risk to policymaking efforts. In response, this study aims to safeguard against undesirable policy measures by revealing the underlying relationships between the factors of domestic hydrogen acceptance and their respective dimensions: attitudinal, socio-political, community, market, and behavioral acceptance. The study employs an online survey (n=~2100) to gauge how different UK householders perceive the proposition of switching from natural gas to hydrogen-fueled appliances. In addition to accounting for housing characteristics (i.e., housing tenure, property type and number of occupants per dwelling) and several other socio-structural variables (e.g. age, gender, and location), the study explores the impacts of consumer heterogeneity on hydrogen acceptance by recruiting respondents from across five distinct groups: (1) fuel poor householders, (2) technology engaged householders, (3) environmentally engaged householders, (4) technology and environmentally engaged householders, and (5) a baseline group (n=~700) which filters out each of the smaller targeted groups (n=~350). This research design reflects the notion that supporting a socially fair and efficient transition to hydrogen will require parallel engagement with potential early adopters and demographic groups impacted by fuel poverty while also accounting strongly for public attitudes towards net zero. Employing a second-order multigroup confirmatory factor analysis (CFA) in Mplus, the proposed hydrogen acceptance model is tested to fit the data through a partial least squares (PLS) approach. In addition to testing differences between and within groups, the findings provide policymakers with critical insights regarding the significance of knowledge and awareness, safety perceptions, perceived community impacts, cost factors, and trust in key actors and stakeholders as potential explanatory factors of hydrogen acceptance. Preliminary results suggest that knowledge and awareness of hydrogen are positively associated with support for domestic hydrogen at the household, community, and national levels. However, with the exception of technology and/or environmentally engaged citizens, much of the population remains unfamiliar with hydrogen and somewhat skeptical of its application in homes. Knowledge and awareness present as critical to facilitating positive safety perceptions, alongside higher levels of trust and more favorable expectations for community benefits, appliance performance, and potential cost savings. Based on these preliminary findings, policymakers should be put on red alert about diffusing hydrogen into the public consciousness in alignment with energy security, fuel poverty, and net-zero agendas.

Keywords: hydrogen homes, social acceptance, consumer heterogeneity, heat decarbonization

Procedia PDF Downloads 76
2 Evaluation of Coal Quality and Geomechanical Moduli Using Core and Geophysical Logs: Study from Middle Permian Barakar Formation of Gondwana Coalfield

Authors: Joyjit Dey, Souvik Sen

Abstract:

Middle Permian Barakar formation is the major economic coal bearing unit of vast east-west trending Damodar Valley basin of Gondwana coalfield. Primary sedimentary structures were studied from the core holes, which represent majorly four facies groups: sandstone dominated facies, sandstone-shale heterolith facies, shale facies and coal facies. Total eight major coal seams have been identified with the bottom most seam being the thickest. Laterally, continuous coal seams were deposited in the calm and quiet environment of extensive floodplain swamps. Channel sinuosity and lateral channel migration/avulsion results in lateral facies heterogeneity and coal splitting. Geophysical well logs (Gamma-Resistivity-Density logs) have been used to establish the vertical and lateral correlation of various litho units field-wide, which reveals the predominance of repetitive fining upwards cycles. Well log data being a permanent record, offers a strong foundation for generating log based property evaluation and helps in characterization of depositional units in terms of lateral and vertical heterogeneity. Low gamma, high resistivity, low density is the typical coal seam signatures in geophysical logs. Here, we have used a density cutoff of 1.6 g/cc as a primary discriminator of coal and the same has been employed to compute various coal assay parameters, which are ash, fixed carbon, moisture, volatile content, cleat porosity, vitrinite reflectance (VRo%), which were calibrated with the laboratory based measurements. The study shows ash content and VRo% increase from west to east (towards basin margin), while fixed carbon, moisture and volatile content increase towards west, depicting increased coal quality westwards. Seam wise cleat porosity decreases from east to west, this would be an effect of overburden, as overburden pressure increases westward with the deepening of basin causing more sediment packet deposited on the western side of the study area. Coal is a porous, viscoelastic material in which velocity and strain both change nonlinearly with stress, especially for stress applied perpendicular to the bedding plane. Usually, the coal seam has a high velocity contrast relative to its neighboring layers. Despite extensive discussion of the maceral and chemical properties of coal, its elastic characteristics have received comparatively little attention. The measurement of the elastic constants of coal presents many difficulties: sample-to-sample inhomogeneity and fragility and velocity dependence on stress, orientation, humidity, and chemical content. In this study, a conclusive empirical equation VS= 0.80VP-0.86 has been used to model shear velocity from compression velocity. Also the same has been used to compute various geomechanical moduli. Geomech analyses yield a Poisson ratio of 0.348 against coals. Average bulk modulus value is 3.97 GPA, while average shear modulus and Young’s modulus values are coming out as 1.34 and 3.59 GPA respectively. These middle Permian Barakar coals show an average 23.84 MPA uniaxial compressive strength (UCS) with 4.97 MPA cohesive strength and 0.46 as friction coefficient. The output values of log based proximate parameters and geomechanical moduli suggest a medium volatile Bituminous grade for the studied coal seams, which is found in the laboratory based core study as well.

Keywords: core analysis, coal characterization, geophysical log, geo-mechanical moduli

Procedia PDF Downloads 190
1 Marketing and Business Intelligence and Their Impact on Products and Services through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies

Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda

Abstract:

Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors, thus refining marketing strategies and enhancing overall customer experiences. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. The analysis of customer data through BI unveils patterns and trends, informing product development, marketing campaigns, and customer service initiatives aimed at enriching experiences and knowledge. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence, business intelligence, and innovation in product and service offerings. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster innovation. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. The chosen method was justified for its efficacy in handling large sample sizes. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational innovation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Organizations equipped with cutting-edge BI tools are better positioned to devise strategies informed by precise insights into customer needs and behaviors. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. Companies leveraging BI demonstrate adeptness in identifying market opportunities guiding the development of novel products and services. The substantial impact of CEK-DI on PSI highlights the crucial role of customer experiences in driving organizational innovation. Firms actively integrating customer insights into their innovation processes are more likely to create offerings aligned with customer expectations, fostering higher levels of product and service innovation. Additionally, the positive and significant effect of MI on CEK-DI underscores the critical role of market insights in shaping innovative strategies. While the relationship between MI and PSI is positive, a slightly weaker significance level indicates a nuanced association, suggesting that while MI contributes to innovation, other factors may also influence the innovation landscape, warranting further exploration. In conclusion, the study underscores the essential role of intelligence capabilities, particularly artificial intelligence, in driving innovation, emphasizing the necessity for organizations to leverage market and customer intelligence for effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of innovation, influencing experiential customer knowledge and shaping organizational strategies and practices, ultimately enhancing overall customer experiences and organizational performance.

Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation

Procedia PDF Downloads 17