Search results for: Senarath Edirimanne
4 Duplicated Common Bile Duct: A Recipe for Injury
Authors: David Armany, Matthew Allaway, Preet Gosal, Senarath Edirimanne
Abstract:
A potentially devastating complication of routine laparoscopic cholecystectomy includes iatrogenic bile duct injuries, which represent a stable incidence rate of 0.3% over the past three decades. Whilst related to several relative risks such as surgeon experience and patient factors (older age, male sex), misinterpretation of biliary tree anatomy remains the most common cause, accounting for 80% of iatrogenic Common Bile Duct injuries. Whilst extremely rare, a duplicate common bile duct anomaly remains a potential variation to encounter during biliary surgery, with 30 recognised cases in the worldwide literature, of which type Vb accounts for 4. We report the case of a rare type Vb variation encountered during intra-operative laparoscopic cholecystectomy and confirmed on cholangiogram. To our knowledge, this is the first documented Type Vb case encountered in an Australian population. Given these anomalies are asymptomatic and can perpetuate iatrogenic common bile duct injuries, awareness of all subtypes is crucial. Irrevocably, preoperative Magnetic Resonance Cholangiopancreatography can help recognise these anomalies before the operating theatre; however, their widespread adoption is limited by expensive and availability.Keywords: duplicated common bile duct, type Vb, cholecystitis, MRCP, cholangiogram, iatrogenic CBD
Procedia PDF Downloads 903 Rendering Cognition Based Learning in Coherence with Development within the Context of PostgreSQL
Authors: Manuela Nayantara Jeyaraj, Senuri Sucharitharathna, Chathurika Senarath, Yasanthy Kanagaraj, Indraka Udayakumara
Abstract:
PostgreSQL is an Object Relational Database Management System (ORDBMS) that has been in existence for a while. Despite the superior features that it wraps and packages to manage database and data, the database community has not fully realized the importance and advantages of PostgreSQL. Hence, this research tends to focus on provisioning a better environment of development for PostgreSQL in order to induce the utilization and elucidate the importance of PostgreSQL. PostgreSQL is also known to be the world’s most elementary SQL-compliant open source ORDBMS. But, users have not yet resolved to PostgreSQL due to the facts that it is still under the layers and the complexity of its persistent textual environment for an introductory user. Simply stating this, there is a dire need to explicate an easy way of making the users comprehend the procedure and standards with which databases are created, tables and the relationships among them, manipulating queries and their flow based on conditions in PostgreSQL to help the community resolve to PostgreSQL at an augmented rate. Hence, this research under development within the context tends to initially identify the dominant features provided by PostgreSQL over its competitors. Following the identified merits, an analysis on why the database community holds a hesitance in migrating to PostgreSQL’s environment will be carried out. These will be modulated and tailored based on the scope and the constraints discovered. The resultant of the research proposes a system that will serve as a designing platform as well as a learning tool that will provide an interactive method of learning via a visual editor mode and incorporate a textual editor for well-versed users. The study is based on conjuring viable solutions that analyze a user’s cognitive perception in comprehending human computer interfaces and the behavioural processing of design elements. By providing a visually draggable and manipulative environment to work with Postgresql databases and table queries, it is expected to highlight the elementary features displayed by Postgresql over any other existent systems in order to grasp and disseminate the importance and simplicity offered by this to a hesitant user.Keywords: cognition, database, PostgreSQL, text-editor, visual-editor
Procedia PDF Downloads 2832 Cosmetic Recommendation Approach Using Machine Learning
Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake
Abstract:
The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.Keywords: content-based filtering, cosmetics, machine learning, recommendation system
Procedia PDF Downloads 1341 Dietary Diversity of Pregnant Mothers in a Semi-Urban Setting: Sri Lanka
Authors: R. B. B. Samantha Ramachandra, L. D. J. Upul Senarath, S. H. Padmal De Silva
Abstract:
Dietary pattern largely differs over countries and even within a country, it shows cultural differences. The dietary pattern changes the energy consumption and micronutrient intake, directly affects the pregnancy outcome. The dietary diversity was used as an indirect measure to assess micronutrient adequacy for pregnant mothers in this study. The study was conducted as a baseline survey with the objective of designing an intervention to improve the dietary diversity of pregnant mothers in Sri Lanka. The survey was conducted in Kalutara district of Sri Lanka in 2015 among 769 pregnant mothers at different gestational ages. Dietary diversity questionnaire developed by Food and Agricultural Organization’s (FAO) Food and Nutrition technical Assistance (FANTA) II project, recommended for cross-country use with adaptations was used for data collection. Trained data collectors met pregnant mothers at field ante-natal clinic and questioned on last 24hr dietary recall with portion size and coded food items to identify the diversity. Pregnant mothers were identified from randomly selected 21 clusters of public health midwife areas. 81.5% mothers (n=627) in the sample had been registered at Public Health Midwife (PHM) before 8 weeks of gestation. 24.4% of mothers were with low starting BMI and 22.7% mothers were with high starting BMI. 47.6% (n=388) mothers had abstained from at least one food item during the pregnancy. The food group with the highest consumption was rice (98.4%) followed by sugar (89.9%). 76.1% mothers had consumed milk, 73% consumed fish and sea foods. Consumption of green leaves was 52% and Vit A rich foods consumed only by 49% mothers. Animal organs, flesh meat and egg all showed low prevalence as 4.7%, 21.6% and 20% respectively. Consumption of locally grown roots, nut, legumes all showed very low prevalence. Consumption of 6 or more food groups was considered as good dietary diversity (DD), 4 to 5 food groups as moderate diversity and 3 or less food groups as poor diversity by FAO FANTA II project. 42.1% mothers demonstrated good DD while another 42.1% recorded moderate diversity. Working mothers showed better DD (51.6%, n=82/159) compared to housewives in the sample (chi = 10.656a,. df=2, p=0.005). The good DD showed gradual improvement from 43.1% to 55.5% along the poorest to richest wealth index (Chi=48.045, df=8 and p=0.000). DD showed significant association with the ethnicity and Moors showed the lowest DD. DD showed no association with the home gardening even though where better diversity expected among those who have home gardening (p=0.548). Sri Lanka is a country where many food items can be grown in the garden and semi-urban setting have adequate space for gardening. Many Sri Lankan mothers do not add homegrown items in their meal. At the same time, their consumption of animal food shows low prevalence. The DD of most of the mothers being either moderate or low (58%) may result from inadequate micro nutrient intake during pregnancy. It is recommended that adding green leaves, locally grown vegetables, roots, nuts and legumes can help increasing the DD of Sri Lankan mothers at low cost.Keywords: dietary diversity, pregnant mothers, micro-nutrient, food groups
Procedia PDF Downloads 164