Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: Said Gadri
2 The Analogue of a Property of Pisot Numbers in Fields of Formal Power Series
Authors: Wiem Gadri
Abstract:
This study delves into the intriguing properties of Pisot and Salem numbers within the framework of formal Laurent series over finite fields, a domain where these numbers’ spectral charac-teristics, Λm(β) and lm(β), have yet to be fully explored. Utilizing a methodological approach that combines algebraic number theory with the analysis of power series, we extend the foundational work of Erdos, Joo, and Komornik to this new setting. Our research uncovers bounds for lm(β), revealing how these depend on the degree of the minimal polynomial of β and thus offering a novel characterization of Pisot and Salem formal power series. The findings significantly contribute to our understanding of these numbers, highlighting their distribution and properties in the context of formal power series. This investigation not only bridges number theory with formal power series analysis but also sets the stage for further interdisciplinary research in these areas.Keywords: Pisot numbers, Salem numbers, formal power series, over a finite field
Procedia PDF Downloads 501 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches
Authors: Chaima Babi, Said Gadri
Abstract:
The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification
Procedia PDF Downloads 95