Search results for: Renato Sa Vega
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 71

Search results for: Renato Sa Vega

11 Laparoscopic Resection Shows Comparable Outcomes to Open Thoracotomy for Thoracoabdominal Neuroblastomas: A Meta-Analysis and Systematic Review

Authors: Peter J. Fusco, Dave M. Mathew, Chris Mathew, Kenneth H. Levy, Kathryn S. Varghese, Stephanie Salazar-Restrepo, Serena M. Mathew, Sofia Khaja, Eamon Vega, Mia Polizzi, Alyssa Mullane, Adham Ahmed

Abstract:

Background: Laparoscopic (LS) removal of neuroblastomas in children has been reported to offer favorable outcomes compared to the conventional open thoracotomy (OT) procedure. Critical perioperative measures such as blood loss, operative time, length of stay, and time to postoperative chemotherapy have all supported laparoscopic use rather than its more invasive counterpart. Herein, a pairwise meta-analysis was performed comparing perioperative outcomes between LS and OT in thoracoabdominal neuroblastoma cases. Methods: A comprehensive literature search was performed on PubMed, Ovid EMBASE, and Scopus databases to identify studies comparing the outcomes of pediatric patients with thoracoabdominal neuroblastomas undergoing resection via OT or LS. After deduplication, 4,227 studies were identified and subjected to initial title screening with exclusion and inclusion criteria to ensure relevance. When studies contained overlapping cohorts, only the larger series were included. Primary outcomes include estimated blood loss (EBL), hospital length of stay (LOS), and mortality, while secondary outcomes were tumor recurrence, post-operative complications, and operation length. The “meta” and “metafor” packages were used in R, version 4.0.2, to pool risk ratios (RR) or standardized mean differences (SMD) in addition to their 95% confidence intervals in the random effects model via the Mantel-Haenszel method. Heterogeneity between studies was assessed using the I² test, while publication bias was assessed via funnel plot. Results: The pooled analysis included 209 patients from 5 studies (141 OT, 68 LS). Of the included studies, 2 originated from the United States, 1 from Toronto, 1 from China, and 1was from a Japanese center. Mean age between study cohorts ranged from 2.4 to 5.3 years old, with female patients occupying between 30.8% to 50% of the study populations. No statistically significant difference was found between the two groups for LOS (SMD -1.02; p=0.083), mortality (RR 0.30; p=0.251), recurrence(RR 0.31; p=0.162), post-operative complications (RR 0.73; p=0.732), or operation length (SMD -0.07; p=0.648). Of note, LS appeared to be protective in the analysis for EBL, although it did not reach statistical significance (SMD -0.4174; p= 0.051). Conclusion: Despite promising literature assessing LS removal of pediatric neuroblastomas, results showed it was non-superior to OT for any explored perioperative outcomes. Given the limited comparative data on the subject, it is evident that randomized trials are necessary to further the efficacy of the conclusions reached.

Keywords: laparoscopy, neuroblastoma, thoracoabdominal, thoracotomy

Procedia PDF Downloads 101
10 Improving Patient Outcomes for Aspiration Pneumonia

Authors: Mary Farrell, Maria Soubra, Sandra Vega, Dorothy Kakraba, Joanne Fontanilla, Moira Kendra, Danielle Tonzola, Stephanie Chiu

Abstract:

Pneumonia is the most common infectious cause of hospitalizations in the United States, with more than one million admissions annually and costs of $10 billion every year, making it the 8th leading cause of death. Aspiration pneumonia is an aggressive type of pneumonia that results from inhalation of oropharyngeal secretions and/or gastric contents and is preventable. The authors hypothesized that an evidence-based aspiration pneumonia clinical care pathway could reduce 30-day hospital readmissions and mortality rates, while improving the overall care of patients. We conducted a retrospective chart review on 979 patients discharged with aspiration pneumonia from January 2021 to December 2022 at Overlook Medical Center. The authors identified patients who were coded with aspiration pneumonia and/or stable sepsis. Secondarily, we identified 30-day readmission rates for aspiration pneumonia from a SNF. The Aspiration Pneumonia Clinical Care Pathway starts in the emergency department (ED) with the initiation of antimicrobials within 4 hours of admission and early recognition of aspiration. Once this is identified, a swallow test is initiated by the bedside nurse, and if the patient demonstrates dysphagia, they are maintained on strict nothing by mouth (NPO) followed by a speech and language pathologist (SLP) referral for an appropriate modified diet recommendation. Aspiration prevention techniques included the avoidance of straws, 45-degree positioning, no talking during meals, taking small bites, placement of the aspiration wrist band, and consuming meals out of the bed in a chair. Nursing education was conducted with a newly created online learning module about aspiration pneumonia. The authors identified 979 patients, with an average age of 73.5 years old, who were diagnosed with aspiration pneumonia on the index hospitalization. These patients were reviewed for a 30-day readmission for aspiration pneumonia or stable sepsis, and mortality rates from January 2021 to December 2022 at Overlook Medical Center (OMC). The 30-day readmission rates were significantly lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011). When evaluating the mortality rates in the pre and post intervention cohort the authors discovered the mortality rates were lower in the post intervention cohort (23.7% vs 22.4%, p = 0.61) Mortality among non-white (self-reported as non-white) patients were lower in the post intervention cohort (34.4% vs. 21.0% , p = 0.05). Patients who reported as a current smoker/vaper in the pre and post cohorts had increased mortality rates (5.9% vs 22%). There was a decrease in mortality for the male population but an increase in mortality for women in the pre and post cohorts (19% vs. 25%). The authors attributed this increase in mortality in the post intervention cohort to more active smokers, more former smokers, and more being admitted from a SNF. This research identified that implementation of an Aspiration Pneumonia Clinical Care Pathway showed a statistically significant decrease in readmission rates and mortality rates in non-whites. The 30-day readmission rates were lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011).

Keywords: aspiration pneumonia, mortality, quality improvement, 30-day pneumonia readmissions

Procedia PDF Downloads 26
9 Kinetic Evaluation of Sterically Hindered Amines under Partial Oxy-Combustion Conditions

Authors: Sara Camino, Fernando Vega, Mercedes Cano, Benito Navarrete, José A. Camino

Abstract:

Carbon capture and storage (CCS) technologies should play a relevant role towards low-carbon systems in the European Union by 2030. Partial oxy-combustion emerges as a promising CCS approach to mitigate anthropogenic CO₂ emissions. Its advantages respect to other CCS technologies rely on the production of a higher CO₂ concentrated flue gas than these provided by conventional air-firing processes. The presence of more CO₂ in the flue gas increases the driving force in the separation process and hence it might lead to further reductions of the energy requirements of the overall CO₂ capture process. A higher CO₂ concentrated flue gas should enhance the CO₂ capture by chemical absorption in solvent kinetic and CO₂ cyclic capacity. They have impact on the performance of the overall CO₂ absorption process by reducing the solvent flow-rate required for a specific CO₂ removal efficiency. Lower solvent flow-rates decreases the reboiler duty during the regeneration stage and also reduces the equipment size and pumping costs. Moreover, R&D activities in this field are focused on novel solvents and blends that provide lower CO₂ absorption enthalpies and therefore lower energy penalties associated to the solvent regeneration. In this respect, sterically hindered amines are considered potential solvents for CO₂ capture. They provide a low energy requirement during the regeneration process due to its molecular structure. However, its absorption kinetics are slow and they must be promoted by blending with faster solvents such as monoethanolamine (MEA) and piperazine (PZ). In this work, the kinetic behavior of two sterically hindered amines were studied under partial oxy-combustion conditions and compared with MEA. A lab-scale semi-batch reactor was used. The CO₂ composition of the synthetic flue gas varied from 15%v/v – conventional coal combustion – to 60%v/v – maximum CO₂ concentration allowable for an optimal partial oxy-combustion operation. Firstly, 2-amino-2-methyl-1-propanol (AMP) showed a hybrid behavior with fast kinetics and a low enthalpy of CO₂ absorption. The second solvent was Isophrondiamine (IF), which has a steric hindrance in one of the amino groups. Its free amino group increases its cyclic capacity. In general, the presence of higher CO₂ concentration in the flue gas accelerated the CO₂ absorption phenomena, producing higher CO₂ absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO₂ concentrated flue gas. The steric hindrance causes a hybrid behavior in this solvent, between both fast and slow kinetic solvents. The kinetics rates observed in all the experiments carried out using AMP were higher than MEA, but lower than the IF. The kinetic enhancement experienced by AMP at a high CO2 concentration is slightly over 60%, instead of 70% – 80% for IF. AMP also improved its CO₂ absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost double the improvements achieved by MEA. In IF experiments, the CO₂ loading increased around 10% from 15%v/v to 60%v/v CO₂ and it changed from 1.10 to 1.34 mole CO₂ per mole solvent, more than 20% of increase. This hybrid kinetic behavior makes AMP and IF promising solvents for partial oxy–combustion applications.

Keywords: absorption, carbon capture, partial oxy-combustion, solvent

Procedia PDF Downloads 162
8 A 500 MWₑ Coal-Fired Power Plant Operated under Partial Oxy-Combustion: Methodology and Economic Evaluation

Authors: Fernando Vega, Esmeralda Portillo, Sara Camino, Benito Navarrete, Elena Montavez

Abstract:

The European Union aims at strongly reducing their CO₂ emissions from energy and industrial sector by 2030. The energy sector contributes with more than two-thirds of the CO₂ emission share derived from anthropogenic activities. Although efforts are mainly focused on the use of renewables by energy production sector, carbon capture and storage (CCS) remains as a frontline option to reduce CO₂ emissions from industrial process, particularly from fossil-fuel power plants and cement production. Among the most feasible and near-to-market CCS technologies, namely post-combustion and oxy-combustion, partial oxy-combustion is a novel concept that can potentially reduce the overall energy requirements of the CO₂ capture process. This technology consists in the use of higher oxygen content in the oxidizer that should increase the CO₂ concentration of the flue gas once the fuel is burnt. The CO₂ is then separated from the flue gas downstream by means of a conventional CO₂ chemical absorption process. The production of a higher CO₂ concentrated flue gas should enhance the CO₂ absorption into the solvent, leading to further reductions of the CO₂ separation performance in terms of solvent flow-rate, equipment size, and energy penalty related to the solvent regeneration. This work evaluates a portfolio of CCS technologies applied to fossil-fuel power plants. For this purpose, an economic evaluation methodology was developed in detail to determine the main economical parameters for CO₂ emission removal such as the levelized cost of electricity (LCOE) and the CO₂ captured and avoided costs. ASPEN Plus™ software was used to simulate the main units of power plant and solve the energy and mass balance. Capital and investment costs were determined from the purchased cost of equipment, also engineering costs and project and process contingencies. The annual capital cost and operating and maintenance costs were later obtained. A complete energy balance was performed to determine the net power produced in each case. The baseline case consists of a supercritical 500 MWe coal-fired power plant using anthracite as a fuel without any CO₂ capture system. Four cases were proposed: conventional post-combustion capture, oxy-combustion and partial oxy-combustion using two levels of oxygen-enriched air (40%v/v and 75%v/v). CO₂ chemical absorption process using monoethanolamine (MEA) was used as a CO₂ separation process whereas the O₂ requirement was achieved using a conventional air separation unit (ASU) based on Linde's cryogenic process. Results showed a reduction of 15% of the total investment cost of the CO₂ separation process when partial oxy-combustion was used. Oxygen-enriched air production also reduced almost half the investment costs required for ASU in comparison with oxy-combustion cases. Partial oxy-combustion has a significant impact on the performance of both CO₂ separation and O₂ production technologies, and it can lead to further energy reductions using new developments on both CO₂ and O₂ separation processes.

Keywords: carbon capture, cost methodology, economic evaluation, partial oxy-combustion

Procedia PDF Downloads 120
7 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges

Authors: Dianelys Vega, Carlos Magluta, Ney Roitman

Abstract:

The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.

Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction

Procedia PDF Downloads 97
6 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles

Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo

Abstract:

Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.

Keywords: HRRP, NCTI, simulated/synthetic database, SVD

Procedia PDF Downloads 328
5 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor

Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez

Abstract:

Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.

Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste

Procedia PDF Downloads 83
4 Absolute Quantification of the Bexsero Vaccine Component Factor H Binding Protein (fHbp) by Selected Reaction Monitoring: The Contribution of Mass Spectrometry in Vaccinology

Authors: Massimiliano Biagini, Marco Spinsanti, Gabriella De Angelis, Sara Tomei, Ilaria Ferlenghi, Maria Scarselli, Alessia Biolchi, Alessandro Muzzi, Brunella Brunelli, Silvana Savino, Marzia M. Giuliani, Isabel Delany, Paolo Costantino, Rino Rappuoli, Vega Masignani, Nathalie Norais

Abstract:

The gram-negative bacterium Neisseria meningitidis serogroup B (MenB) is an exclusively human pathogen representing the major cause of meningitides and severe sepsis in infants and children but also in young adults. This pathogen is usually present in the 30% of healthy population that act as a reservoir, spreading it through saliva and respiratory fluids during coughing, sneezing, kissing. Among surface-exposed protein components of this diplococcus, factor H binding protein is a lipoprotein proved to be a protective antigen used as a component of the recently licensed Bexsero vaccine. fHbp is a highly variable meningococcal protein: to reflect its remarkable sequence variability, it has been classified in three variants (or two subfamilies), and with poor cross-protection among the different variants. Furthermore, the level of fHbp expression varies significantly among strains, and this has also been considered an important factor for predicting MenB strain susceptibility to anti-fHbp antisera. Different methods have been used to assess fHbp expression on meningococcal strains, however, all these methods use anti-fHbp antibodies, and for this reason, the results are affected by the different affinity that antibodies can have to different antigenic variants. To overcome the limitations of an antibody-based quantification, we developed a quantitative Mass Spectrometry (MS) approach. Selected Reaction Monitoring (SRM) recently emerged as a powerful MS tool for detecting and quantifying proteins in complex mixtures. SRM is based on the targeted detection of ProteoTypicPeptides (PTPs), which are unique signatures of a protein that can be easily detected and quantified by MS. This approach, proven to be highly sensitive, quantitatively accurate and highly reproducible, was used to quantify the absolute amount of fHbp antigen in total extracts derived from 105 clinical isolates, evenly distributed among the three main variant groups and selected to be representative of the fHbp circulating subvariants around the world. We extended the study at the genetic level investigating the correlation between the differential level of expression and polymorphisms present within the genes and their promoter sequences. The implications of fHbp expression on the susceptibility of the strain to killing by anti-fHbp antisera are also presented. To date this is the first comprehensive fHbp expression profiling in a large panel of Neisseria meningitidis clinical isolates driven by an antibody-independent MS-based methodology, opening the door to new applications in vaccine coverage prediction and reinforcing the molecular understanding of released vaccines.

Keywords: quantitative mass spectrometry, Neisseria meningitidis, vaccines, bexsero, molecular epidemiology

Procedia PDF Downloads 277
3 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer

Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller

Abstract:

Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.

Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine

Procedia PDF Downloads 64
2 Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials

Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco

Abstract:

Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.

Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites

Procedia PDF Downloads 245
1 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins

Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan

Abstract:

Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.

Keywords: aging heart, mitochondria, proteomics, redox state

Procedia PDF Downloads 142