Search results for: Puccinia striiformis
5 Resistance Evaluation of Common Wheat Varieties/Lines to Leaf Rust and Stripe Rust at Seedling and Adult-Plant Stage in China, Gansu Province
Authors: Shelin Jin, Jin Huang, Shiqin Cao, Qiuzhen Jia, Bo Zhang, Zhenyu Sun
Abstract:
Stripe rust and leaf rust, caused by Puccinia striiformis f.sp. tritici and Puccinia recondita f.sp. tritici are two of the most damaging diseases of wheat in China. In recent years, leaf rust has migrated to some wheat growing areas previously suitable for stripe rust, resulting in a mixture of the two diseases occurring in the same area and at the same time, and seriously damage wheat production in China, Gansu Province. The most effective method of prevention those two diseases are through the use of resistant cultivars. However, many studies have only carried out of resistance of wheat varieties for a single disease; resistance to both diseases is unknown. In order to definite the resistance composition of wheat varieties to these two diseases, 715 wheat varieties/lines from 8 breeding units in Gansu province were collected to test for the resistance to stripe rust and leaf rust at seedling stage in greenhouse and at adult plant stage in field in 2016-2018, respectively. Spore suspensions with the fresh mixture races of CYR32, CYR33, and CYR34 of Puccinia striiformis f.sp. tritici and mixture races of THTP, THTT, TKTT, and THTS of Puccinia recondita f.sp. tritici were used for inoculation separately. The result shows that only 4.74% of the varieties/lines show comprehensive resistance to strip rust and leaf rust at all growth stages, and there are 34 wheat varieties/lines including Tianxuan 67, 2006-1-4-1-4-2-7-2-3-10, 03-139-1-2-2-1-2-1, Qingnong 21, Lenghan 5, 04-203-1-1-1 and so on. In seedling stage, the frequencies of resistant varieties/lines to wheat strip rust and leaf rust were 56.64% and 30.23%. While the materials were susceptible to these diseases were 43.36% and 69.77%. 71 varieties/lines were resistant to those two diseases, accounted for 9.93%. 10 varieties/lines, accounted for 1.4%, were highly resistant (including immune/near immune) to those two diseases. In adult-plant stage, the frequencies of resistant varieties/lines to wheat strip rust and leaf rust were 76.53% and 36.11%. While the materials were susceptible to these diseases were 23.47% and 63.89%. 137 varieties/lines were resistant to those two diseases, accounted for 19.16%. 59 varieties/lines, accounted for 8.25%, were highly resistant (including immune/near immune) to those two diseases. Overall, the 715 varieties /lines had high resistance to wheat strip rust, but poor resistance to leaf rust. This study found out some resistant materials which had better comprehensive resistance to leaf rust and strip rust, also pointed out the resistance characteristics of 715 varieties/lines to those two diseases at the seedling stage and adult-plant stage, which will be of great guiding significance in wheat resistance breeding and comprehensive control those two diseases in China, Gansu Province in the future.Keywords: Puccinia striiformis f.sp. tritici, Puccinia recondita f.sp. tritici, resistance of variety, wheat
Procedia PDF Downloads 1184 Unequal Contributions of Parental Isolates in Somatic Recombination of the Stripe Rust Fungus
Authors: Xianming Chen, Yu Lei, Meinan Wang
Abstract:
The dikaryotic basidiomycete fungus, Puccinia striiformis, causes stripe rust, one of the most important diseases of wheat and barley worldwide. The pathogen is largely reproduced asexually, and asexual recombination has been hypothesized to be one of the mechanisms for the pathogen variations. To test the hypothesis and understand the genetic process of asexual recombination, somatic recombinant isolates were obtained under controlled conditions by inoculating susceptible host plants with a mixture of equal quantity of urediniospores of isolates with different virulence patterns and selecting through a series of inoculation on host plants with different genes for resistance to one of the parental isolates. The potential recombinant isolates were phenotypically characterized by virulence testing on the set of 18 wheat lines used to differentiate races of the wheat stripe rust pathogen, P. striiformis f. sp. tritici (Pst), for the combinations of Pst isolates; or on both sets of the wheat differentials and 12 barley differentials for identifying races of the barley stripe rust pathogen, P. striiformis f. sp. hordei (Psh) for combinations of a Pst isolate and a Psh isolate. The progeny and parental isolates were also genotypically characterized with 51 simple sequence repeat and 90 single-nucleotide polymorphism markers. From nine combinations of parental isolates, 68 potential recombinant isolates were obtained, of which 33 (48.5%) had similar virulence patterns to one of the parental isolates, and 35 (51.5%) had virulence patterns distinct from either of the parental isolates. Of the 35 isolates of distinct virulence patterns, 11 were identified as races that had been previously detected from natural collections and 24 were identified as new races. The molecular marker data confirmed 66 of the 68 isolates as recombinants. The percentages of parental marker alleles ranged from 0.9% to 98.9% and were significantly different from equal proportions in the recombinant isolates. Except for a couple of combinations, the greater or less contribution was not specific to any particular parental isolates as the same parental isolates contributed more to some of the progeny isolates but less to the other progeny isolates in the same combination. The unequal contributions by parental isolates appear to be a general role in somatic recombination for the stripe rust fungus, which may be used to distinguish asexual recombination from sexual recombination in studying the evolutionary mechanisms of the highly variable fungal pathogen.Keywords: molecular markers, Puccinia striiformis, somatic recombination, stripe rust
Procedia PDF Downloads 2423 Genetic Analysis of Rust Resistance Genes in Global Wheat
Authors: Aktar-Uz-Zaman, M. Tuhina-Khatun, Mohamed Hanafi Musa
Abstract:
Three rust diseases: leaf (brown) rust caused by Puccinia triticina Eriks, stripe (yellow) rust caused by Puccinia striiformis West, and stem (black) rust caused by Puccinia graminis f. sp. tritici are economically important diseases of wheat in world wide. Yield loss due to leaf rust is 40% in susceptible cultivars. Yield losses caused by the stem rust pathogens in the mid of 20 century reached 20-30% in Eastern and Central Europe and the most virulent stem rust race Ug99 emerged first in Uganda and after that in Kenya, Ethiopia, Yemen, in the Middle East and South Asia. Yield losses were estimated up to 100%, whereas, up to 80% have been reported in Kenya during 1999. In case of stripe rust, severity level has been recorded 60% - 70% as compared to 100% severity of susceptible check in disease screening nurseries in Kenya. Improvement of resistant varieties or cultivars is the sustainable, economical and environmentally friendly approaches for increasing the global wheat production to suppress the rust diseases. More than 68 leaf rust, 49 stripe rust and 53 stem rust resistance genes have been identified in the global wheat cultivars or varieties using different molecular breeding approaches. Among these, Lr1, Lr9, Lr10, Lr19, Lr21, Lr24, Lr25, Lr28, Lr29, Lr34, Lr35, Lr37, Lr39, Lr47, Lr51, Lr3bg, Lr18, Lr40, Lr46, and Lr50 leaf rust resistance genes have been identified by using molecular, enzymatic and microsatellite markers from African, Asian, European cultivars of hexaploid wheat (Triticum aestivum), durum wheat and diploid wheat species. These genes are located on 20, of the 21 chromosomes of hexaploid wheat. Similarly, Sr1, Sr2, Sr24, and Sr3, Sr31 stem rust resistance genes have been recognized from wheat cultivars of Pakistan, India, Kenya, and Uganda etc. A race of P. striiformis (stripe rust) Yr9, Yr18, and Yr29 was first observed in East Africa, Italy, Pakistan and India wheat cultivars. These stripe rust resistance genes are located on chromosomes 1BL, 4BL, 6AL, 3BS and 6BL in bread wheat cultivars. All these identified resistant genes could be used for notable improvement of susceptible wheat cultivars in the future.Keywords: hexaploid wheat, resistance genes, rust disease, triticum aestivum
Procedia PDF Downloads 4812 The Efficacy of Salicylic Acid and Puccinia Triticina Isolates Priming Wheat Plant to Diuraphis Noxia Damage
Authors: Huzaifa Bilal
Abstract:
Russian wheat aphid (Diuraphis noxia, Kurdjumov) is considered an economically important wheat (Triticum aestivum L.) pest worldwide and in South Africa. The RWA damages wheat plants and reduces annual yields by more than 10%. Even though pest management by pesticides and resistance breeding is an attractive option, chemicals can cause harm to the environment. Furthermore, the evolution of resistance-breaking aphid biotypes has out-paced the release of resistant cultivars. An alternative strategy to reduce the impact of aphid damage on plants, such as priming, which sensitizes plants to respond effectively to subsequent attacks, is necessary. In this study, wheat plants at the seedling and flag leaf stages were primed by salicylic acid and isolate representative of two races of the leaf rust pathogen Puccinia triticina Eriks. (Pt), before RWA (South African RWA biotypes 1 and 4) infestation. Randomized complete block design experiments were conducted in the greenhouse to study plant-pest interaction in primed and non-primed plants. Analysis of induced aphid damage indicated salicylic acid differentially primed wheat cultivars for increased resistance to the RWASA biotypes. At the seedling stage, all cultivars were primed for enhanced resistance to RWASA1, while at the flag leaf stage, only PAN 3111, SST 356 and Makalote were primed for increased resistance. The Puccinia triticina efficaciously primed wheat cultivars for excellent resistance to RWASA1 at the seedling and flag leaf stages. However, Pt failed to enhance the four Lesotho cultivars' resistance to RWASA4 at the seedling stage and PAN 3118 at the flag leaf stage. The induced responses at the seedling and flag leaf stages were positively correlated in all the treatments. Primed plants induced high activity of antioxidant enzymes like peroxidase, ascorbate peroxidase and superoxide dismutase. High antioxidant activity indicates activation of resistant responses in primed plants (primed by salicylic acid and Puccina triticina). Isolates of avirulent Pt races can be a worthy priming agent for improved resistance to RWA infestation. Further confirmation of the priming effects needs to be evaluated at the field trials to investigate its application efficiency.Keywords: Russian wheat aphis, salicylic acid, puccina triticina, priming
Procedia PDF Downloads 2081 Reaction of Nine Candidate Wheat Lines/Mutants against Leaf Rust: Lodging and Aphid Population under Field Condition
Authors: Muhammad Mohsan, Mehboob Ur-Rahman, Sana Zulfiqar, Shumila Ashfaq
Abstract:
Brown Rust (Puccinia triticina), also known as leaf rust, pose a serious threat to wheat cultivation in the world. Nine candidate wheat lines/mutants were subjected to rust inoculation, lodging and aphid population in vivo conditions. Four lines/mutants (E-284, E-505, 2008-6 MR and 2008-14MR) were found resistant to leaf rust attack. Two lines (PGMB 15-29 and 2011-1 MR) displayed moderately resistant reactions against the disease. Three lines/mutants were depicted as susceptible to leaf rust. The lowest population of aphids, i.e., 16.67, was observed on 2008-14MR. Three lines/mutants (NN1-47, NN1-89 and PGMB 15-29) were found under zero level of lodging. The presence and absence of different leaf rust-resistant genes like Lr13, Lr34, Lr46 and Lr67 were assessed with the help of molecular markers. All the wheat lines/mutants were found loaded with leaf rust-resistant genes such as Lr13 and Lr 34, while Lr46 and Lr67 were found in 66% of wheat lines/mutants. The resistant source can be exploited in the breeding program to develop rust, aphid and lodging with race-nonspecific resistant wheat variety.Keywords: wheat, leaf rust, lodging, aphid
Procedia PDF Downloads 88