Search results for: Nidhal Azawi
6 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2535 Adaptive Motion Compensated Spatial Temporal Filter of Colonoscopy Video
Authors: Nidhal Azawi
Abstract:
Colonoscopy procedure is widely used in the world to detect an abnormality. Early diagnosis can help to heal many patients. Because of the unavoidable artifacts that exist in colon images, doctors cannot detect a colon surface precisely. The purpose of this work is to improve the visual quality of colonoscopy videos to provide better information for physicians by removing some artifacts. This work complements a series of work consisting of three previously published papers. In this paper, Optic flow is used for motion compensation, and then consecutive images are aligned/registered to integrate some information to create a new image that has or reveals more information than the original one. Colon images have been classified into informative and noninformative images by using a deep neural network. Then, two different strategies were used to treat informative and noninformative images. Informative images were treated by using Lucas Kanade (LK) with an adaptive temporal mean/median filter, whereas noninformative images are treated by using Lucas Kanade with a derivative of Gaussian (LKDOG) with adaptive temporal median images. A comparison result showed that this work achieved better results than that results in the state- of- the- art strategies for the same degraded colon images data set, which consists of 1000 images. The new proposed algorithm reduced the error alignment by about a factor of 0.3 with a 100% successfully image alignment ratio. In conclusion, this algorithm achieved better results than the state-of-the-art approaches in case of enhancing the informative images as shown in the results section; also, it succeeded to convert the non-informative images that have very few details/no details because of the blurriness/out of focus or because of the specular highlight dominate significant amount of an image to informative images.Keywords: optic flow, colonoscopy, artifacts, spatial temporal filter
Procedia PDF Downloads 1134 A Case Study in Using Gamification in the Mobile Computing Course
Authors: Rula Al Azawi, Abobaker Shafi
Abstract:
The purpose of this paper is to use gamification technology in the mobile computing course to increase students motivation and engagement. The game applied to be designed by students focusing also to design educational game for children with age six years. This game will teach the students how to learn in a fun way. Our case study is implemented at Gulf College which is affiliated with Staffordshire University-UK. Our game design was applied to teach students Android Studio software by designing an educational game. Our goal with gamification is to improve student attendance, increase student engagement, problem solving and user stratification. Finally, we describe the findings and results of our case study. The data analysis and evaluation are based on students feedback, staff feedback and the final marking grades for the students.Keywords: gamification, educational game, android studio software, students motivation and engagement
Procedia PDF Downloads 4553 An Assessment of the Temperature Change Scenarios Using RS and GIS Techniques: A Case Study of Sindh
Authors: Jan Muhammad, Saad Malik, Fadia W. Al-Azawi, Ali Imran
Abstract:
In the era of climate variability, rising temperatures are the most significant aspect. In this study PRECIS model data and observed data are used for assessing the temperature change scenarios of Sindh province during the first half of present century. Observed data from various meteorological stations of Sindh are the primary source for temperature change detection. The current scenario (1961–1990) and the future one (2010-2050) are acted by the PRECIS Regional Climate Model at a spatial resolution of 25 * 25 km. Regional Climate Model (RCM) can yield reasonably suitable projections to be used for climate-scenario. The main objective of the study is to map the simulated temperature as obtained from climate model-PRECIS and their comparison with observed temperatures. The analysis is done on all the districts of Sindh in order to have a more precise picture of temperature change scenarios. According to results the temperature is likely to increases by 1.5 - 2.1°C by 2050, compared to the baseline temperature of 1961-1990. The model assesses more accurate values in northern districts of Sindh as compared to the coastal belt of Sindh. All the district of the Sindh province exhibit an increasing trend in the mean temperature scenarios and each decade seems to be warmer than the previous one. An understanding of the change in temperatures is very vital for various sectors such as weather forecasting, water, agriculture, and health, etc.Keywords: PRECIS Model, real observed data, Arc GIS, interpolation techniques
Procedia PDF Downloads 2492 Causality between Stock Indices and Cryptocurrencies during the Russia-Ukraine War
Authors: Nidhal Mgadmi, Abdelhafidh Othmani
Abstract:
This article examines the causal relationship between stock indices and cryptocurrencies during the current war between Russia and Ukraine. The econometric investigation runs from February 24, 2022, to April 12, 2023, focusing on seven stock market indices (S&P500, DAX, CAC40, Nikkei, TSX, MOEX, and PFTS) and seven cryptocurrencies (Bitcoin, Ethereum, Litcoin, Dash, Ripple, DigiByte and XEM). In this article, we try to understand how investors react to fluctuations in financial assets to seek safe havens in cryptocurrencies. We used dynamic causality to detect a possible causal relationship in the short term and seven models to estimate the long-term relationship between cryptocurrencies and financial assets. The causal relationship between financial market indexes and cryptocurrency coins in the short run indicates that three famous cryptocurrencies (BITCOIN, ETHEREUM, RIPPLE) and the two digital assets with minor popularity (XEM, Digibyte) are impacted by the German, Russian, and Ukrainian stock markets. In the long run, we found a positive and significate effect of the American, Canadian, French, and Ukrainian stock market indexes on Bitcoin. Thus, the stability of the traditional financial markets during the current war period can be explained on the one hand by investors’ fears of an unstable business climate, and on the other hand, by speculators’ sentiment towards new electronic products, which are perceived as hedging instruments and a safe haven in the face of the conflict between Ukraine and Russia.Keywords: causality, stock indices, cryptocurrency, war, Russia, Ukraine
Procedia PDF Downloads 671 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method
Procedia PDF Downloads 308