Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3
Search results for: Kashaf Gul
3 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 5452 Classification of IoT Traffic Security Attacks Using Deep Learning
Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem
Abstract:
The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.Keywords: IoT, traffic security, deep learning, classification
Procedia PDF Downloads 1521 Stratigraghy and Identifying Boundaries of Mozduran Formation with Magnetite Method in East Kopet-Dagh Basin
Authors: Z. Kadivar, M. Vahidinia, A. Mousavinia
Abstract:
Kopet-Dagh Mountain Range is located in the north and northeast of Iran. Mozduran Formation in the east of Kopet-Dagh is mainly composed of limestone, dolomite, with shale and sandstone interbedded. Mozduran Formation is reservoir rock of the Khangiran gas field. The location of the study was east Kopet-Dagh basin (Northeast Iran) where the deliberate thickness of formation is 418 meters. In the present study, a total of 57 samples were gathered. Moreover, 100 thin sections were made out of 52 samples. According to the findings of the thin section study, 18 genera and nine species of foraminifera and algae were identified. Based on the index fossils, the age of the Mozduran Formation was identified as Upper Jurassic (Kimmerdgian-Tithonian) in the east of Kopet-Dagh basin. According to the magnetite data (total intensity and RTP map), there is a disconformity (low intensity) between the Kashaf-Rood Formation and Mozduran Formation. At the top, where among Mozduran Formation and Shurijeh Formation, is high intensity and a widespread disconformity (high intensity).Keywords: upper jurassic, magnetometre, mozduran formation, stratigraphy
Procedia PDF Downloads 223