Search results for: Jingyu Hou
4 The Preparation of High Surface Area Ni/MgAl2O4 Catalysts for Syngas Methanation
Authors: Jingyu Zhou, Hongfang Ma, Haitao Zhang, Weiyong Ying
Abstract:
High surface area MgAl2O4 supported Nickel catalysts with PVA loadings varying from 0% to 15% were prepared by precipitation and impregnation method. The catalysts were characterized by low temperature N2 adsorption/desorption, X-ray diffraction and H2 temperature programmed reduction. Compared with Ni/γ-Al2O3 catalyst, Ni/MgAl2O4 catalysts exhibited higher activity and selectivity in high temperature. Among the catalysts, Ni/MgAl2O4-5P with 5 wt% PVA showed the best performance, and achieved 95% CO conversion and 96% CH4 selectivity at 600°C, 2.0 MPa, and a WHSV of 12,000 mL·g⁻¹.h⁻¹. It also maintained good stability in 50h life test.Keywords: methanation, MgAl2O4 support, PVA, high surface area
Procedia PDF Downloads 3343 Project and Module Based Teaching and Learning
Authors: Jingyu Hou
Abstract:
This paper proposes a new teaching and learning approach-project and Module Based Teaching and Learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice, and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units.Keywords: computer science education, project and module based, software engineering, module based teaching and learning
Procedia PDF Downloads 4902 Formal Verification for Ethereum Smart Contract Using Coq
Authors: Xia Yang, Zheng Yang, Haiyong Sun, Yan Fang, Jingyu Liu, Jia Song
Abstract:
The smart contract in Ethereum is a unique program deployed on the Ethereum Virtual Machine (EVM) to help manage cryptocurrency. The security of this smart contract is critical to Ethereum’s operation and highly sensitive. In this paper, we present a formal model for smart contract, using the separated term-obligation (STO) strategy to formalize and verify the smart contract. We use the IBM smart sponsor contract (SSC) as an example to elaborate the detail of the formalizing process. We also propose a formal smart sponsor contract model (FSSCM) and verify SSC’s security properties with an interactive theorem prover Coq. We found the 'Unchecked-Send' vulnerability in the SSC, using our formal model and verification method. Finally, we demonstrate how we can formalize and verify other smart contracts with this approach, and our work indicates that this formal verification can effectively verify the correctness and security of smart contracts.Keywords: smart contract, formal verification, Ethereum, Coq
Procedia PDF Downloads 6891 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine
Procedia PDF Downloads 176