Search results for: Hikmet Orhan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: Hikmet Orhan

3 Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture

Authors: Endalkachew Abebe Kebede, Bojin Bojinov, Andon Vasilev Andonov, Orhan Dengiz

Abstract:

Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study.

Keywords: landsat 9, leaf spectrometer, sentinel 2, UAV

Procedia PDF Downloads 72
2 Evaluating Urban City Indices: A Study for Investigating Functional Domains, Indicators and Integration Methods

Authors: Fatih Gundogan, Fatih Kafali, Abdullah Karadag, Alper Baloglu, Ersoy Pehlivan, Mustafa Eruyar, Osman Bayram, Orhan Karademiroglu, Wasim Shoman

Abstract:

Nowadays many cities around the world are investing their efforts and resources for the purpose of facilitating their citizen’s life and making cities more livable and sustainable by implementing newly emerged phenomena of smart city. For this purpose, related research institutions prepare and publish smart city indices or benchmarking reports aiming to measure the city’s current ‘smartness’ status. Several functional domains, various indicators along different selection and calculation methods are found within such indices and reports. The selection criteria varied for each institution resulting in inconsistency in the ranking and evaluating. This research aims to evaluate the impact of selecting such functional domains, indicators and calculation methods which may cause change in the rank. For that, six functional domains, i.e. Environment, Mobility, Economy, People, Living and governance, were selected covering 19 focus areas and 41 sub-focus (variable) areas. 60 out of 191 indicators were also selected according to several criteria. These were identified as a result of extensive literature review for 13 well known global indices and research and the ISO 37120 standards of sustainable development of communities. The values of the identified indicators were obtained from reliable sources for ten cities. The values of each indicator for the selected cities were normalized and standardized to objectively investigate the impact of the chosen indicators. Moreover, the effect of choosing an integration method to represent the values of indicators for each city is investigated by comparing the results of two of the most used methods i.e. geometric aggregation and fuzzy logic. The essence of these methods is assigning a weight to each indicator its relative significance. However, both methods resulted in different weights for the same indicator. As a result of this study, the alternation in city ranking resulting from each method was investigated and discussed separately. Generally, each method illustrated different ranking for the selected cities. However, it was observed that within certain functional areas the rank remained unchanged in both integration method. Based on the results of the study, it is recommended utilizing a common platform and method to objectively evaluate cities around the world. The common method should provide policymakers proper tools to evaluate their decisions and investments relative to other cities. Moreover, for smart cities indices, at least 481 different indicators were found, which is an immense number of indicators to be considered, especially for a smart city index. Further works should be devoted to finding mutual indicators representing the index purpose globally and objectively.

Keywords: functional domain, urban city index, indicator, smart city

Procedia PDF Downloads 121
1 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 118