Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Guanghua Shi

4 Heinz-Type Inequalities in Hilbert Spaces

Authors: Jin Liang, Guanghua Shi


In this paper, we are concerned with the further refinements of the Heinz operator inequalities in Hilbert spaces. Our purpose is to derive several new Heinz-type operator inequalities. First, with the help of the Taylor series of some hyperbolic functions, we obtain some refinements of the ordering relations among Heinz means defined by Bhatia with different parameters, which would be more suitable in obtaining the corresponding operator inequalities. Second, we present some generalizations of Heinz operator inequalities. Finally, we give a matrix version of the Heinz inequality for the Hilbert-Schmidt norm.

Keywords: Hilbert space, means inequality, norm inequality, positive linear operator

Procedia PDF Downloads 194
3 The Evaluation Model for the Quality of Software Based on Open Source Code

Authors: Li Donghong, Peng Fuyang, Yang Guanghua, Su Xiaoyan


Using open source code is a popular method of software development. How to evaluate the quality of software becomes more important. This paper introduces an evaluation model. The model evaluates the quality from four dimensions: technology, production, management, and development. Each dimension includes many indicators. The weight of indicator can be modified according to the purpose of evaluation. The paper also introduces a method of using the model. The evaluating result can provide good advice for evaluating or purchasing the software.

Keywords: evaluation model, software quality, open source code, evaluation indicator

Procedia PDF Downloads 313
2 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan


Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 178
1 Assessment of Estrogenic Contamination and Potential Risk in Taihu Lake, China

Authors: Guanghua Lu, Zhenhua Yan


To investigate the estrogenic contamination and potential risk of Taihu Lake, eight active biomonitoring points in the northern section of Taihu Lake were set up and located in Wangyuhe River outlet (P1), Gonghu Bay (P2 and P3), Meiliang Bay (P4 and P5), Zhushan Bay (P6 and P7) and Lake Centre (P8). A suite of biomarkers in caged fish after in situ exposure for 28 days, coupled with six selected exogenous estrogens in water, were determined in May and December 2011. Six target estrogens, namely estrone (E1), 17b-estradiol (E2), ethinylestradiol (EE2), estriol (E3), diethylstilbestrol (DES) and bisphenol A (BPA), were quantified using UPLC/MS/MS. The concentrations of E1, E2, E3, EE2, DES and BPA ranged from ND to 3.61 ng/L, ND to 17.3 ng/L, ND to 1.65 ng/L, ND to 10.2 ng/L, ND to 34.6 ng/L, and 3.95 to 207 ng/L, respectively. BPA was detected at all sampling points at all test periods, E2 was detected at 95% of samples, E1 and EE2 was detected at 75% of samples, and E3 was detected only in December 2011 with quite low concentrations. Each individual estrogen concentration measured at each sampling point was multiplied by its relative potency to gain the estradiol equivalent (EEQ). The total EEQ values in all the monitoring points ranged from 5.69 to 17.8 ng/L in May 2011, and from 4.46 to 21.1 ng/L in December 2011. E2 and EE2 were thought to be the major causal agents responsible for the estrogenic activities. Serum vitellogenin and E2 levels, gonadal DNA damage, and gonadosomatic index were measured in the in situ exposed fish. An enhanced integrated biomarker response (EIBR) was calculated and used to evaluate potential feminization risk of fish in the polluted area of Taihu Lake. EIBR index showed good agreement with the observed total EEQ levels in water. Our results indicated that Gong bay and the lake center had a low estrogenic risk, whereas Wangyuhe River, Meiliang Bay, and Zhushan Bay might present a higher risk to fish.

Keywords: active biomonitoring, estrogen, feminization risk, Taihu Lake

Procedia PDF Downloads 226