Search results for: Dicky R. Munaf
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Search results for: Dicky R. Munaf

7 Competitive Intelligence within the Maritime Security Intelligence

Authors: Dicky R. Munaf, Ayu Bulan Tisna

Abstract:

Competitive intelligence (business intelligence) is the process of observing the external environment which often conducted by many organizations to get the relevant information which will be used to create the organization policy, whereas, security intelligence is related to the function of the officers who have the duties to protect the country and its people from every criminal actions that might harm the national and individual security. Therefore, the intelligence dimension of maritime security is associated with all the intelligence activities including the subject and the object that connected to the maritime issues. The concept of intelligence business regarding the maritime security perspective is the efforts to protect the maritime security using the analysis of economic movements as the basic strategic plan. Clearly, a weak maritime security will cause high operational cost to all the economic activities which uses the sea as its media. Thus, it affects the competitiveness of a country compared to the other countries that are able to maintain the maritime law enforcement and secure their marine territory. So, the intelligence business within the security intelligence is important to conduct as the beginning process of the identification against the opponent strategy that might happen in the present or in the future. Thereby, the scenario of the potential impact of all the illegal maritime activities, as well as the strategy in preventing the opponent maneuver can be made.

Keywords: competitive intelligence, maritime security intelligence, intelligent systems, information technology

Procedia PDF Downloads 498
6 Analyzing the Empirical Link between Islamic Finance and Growth of Real Output: A Time Series Application to Pakistan

Authors: Nazima Ellahi, Danish Ramzan

Abstract:

There is a growing trend among development economists regarding the importance of financial sector for economic development and growth activities. The development thus introduced, helps to promote welfare effects and poverty alleviation. This study is an attempt to find the nature of link between Islamic banking financing and development of output growth for Pakistan. Time series data set has been utilized for a time period ranging from 1990 to 2010. Following the Phillip Perron (PP) and Augmented Dicky Fuller (ADF) test of unit root this study applied Ordinary Least Squares (OLS) method of estimation and found encouraging results in favor of promoting the Islamic banking practices in Pakistan.

Keywords: Islamic finance, poverty alleviation, economic growth, finance, commerce

Procedia PDF Downloads 344
5 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach

Authors: Munaf Rashid

Abstract:

For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.

Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook

Procedia PDF Downloads 470
4 Tofu Flour as a Protein Sources

Authors: Dicky Eka Putra, S. P. Nadia Chairunissa, Lidia Paramita, Roza Hartati, Ice Yolanda Puri

Abstract:

Background: Soy bean and the products such as tofu, tempeh and soy milk are famous in the community. Moreover, another product is tofu flour which is not familiar in Indonesia yet and it is well known as Okara. There are massive differences of energy, protein and carbohydrate between them which is know as good for protein sources as well. Unfortunately, it is seldom used as food variety. Basically, it can be benefit in order to create many products for example cakes, snacks and some desserts. Aim: the study was in order to promote the benefit of tofu flour as school feeding of elementary school and baby porridge and also to compare the nutrient. Method: Soy pulp was filtered and steamed approximately 30 minutes. Then, it was put at a plate under sunrise or barked on the oven for 10 hours at 800C. When it have dried and milling and tofu flour is ready to be used. Result: Tofu flour could be used as substitute of flour and rice flour when people want to cook some foods. In addition, some references said that soy bean is good for a specific remedy for the proper functioning of the heart, liver, kidneys, stomach, and bowels, constipation, as a stimulant for the lungs, for eradication of poison from the system, improving the complexion by cleaning the skin of impurities, and stimulating the growth and appearance of the hair. Discussion: Comparing between soy bean, tofu and tofu flour which has difference amount of nutrients. For example energy 382 kcal, 79 kcal and 393 kcal respectively and also protein 30.2 kcal, 7.8 kcal, and 17.4 kcal. In addition, carbohydrate of soy pulp was high than soy bean and tofu (30.1 kcal). Finally, local should replace flour, rice and gelatin rice flour with tofu flour.

Keywords: tofu flour, protein, soy bean, school feeding

Procedia PDF Downloads 377
3 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP

Procedia PDF Downloads 97
2 The Comparison of Safety Factor in Dry and Rainy Condition at Coal Bearing Formation. Case Study: Lahat Area South Sumatera Province, Indonesia

Authors: Teguh Nurhidayat, Nurhamid, Dicky Muslim, Zufialdi Zakaria, Irvan Sophian

Abstract:

This paper presents the role of climate change as the factor that induces landslide. Case study is located at Lahat Regency, South Sumatera Province, Indonesia. Study area has high economic value of coal reserves (mostly subbituminous – bituminous), which is developable for open pit coal mining in the future. Seams are found in Muara Enim Formation. This formation is at south Sumatera basin which is formed at Tertiary as a result of collision between the indian plate and eurasian plate. South Sumatera basin which is a basin located in back arc basin. This study aims to unravel the relationship between slope stability with different season condition in tropical climate. Undisturbed soil samples were obtained in the field along with other geological data. Laboratory works were carried out to obtain physical and mechanical properties of soils. Methodology to analyze slope stability is bishop method. Bishop methods are used to identify safety factor of slope. Result shows that slopes in rainy season conditions are more prone to landslides than in dry season. In the dry seasons with moisture content is 22.65%, safety factor is 1.28 the slope in stable condition. If rain is approaching with moisture content increasing to 97.8%, the slope began to be critical. On wet condition groundwater levels is increased, followed by γ (unit weight), c (cohesion), and φ (angle of friction) at 18.04, 5,88 kN/m2, and 28,04°, respectively, which ultimately determines the security factor FS to be 1.01 (slope in unstable conditions).

Keywords: rainfall, moisture content, slope analysis, landslide prone

Procedia PDF Downloads 312
1 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media

Procedia PDF Downloads 105