Search results for: D. O. Adejoye
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: D. O. Adejoye

2 Transcriptomic Response of Calmodulin Encoding Gene (CaM) in Pesticide Utilizing Talaromyces Fungal Strains

Authors: M. D. Asemoloye, S. G. Jonathan, A. Rafiq, O. J. Olawuyi, D. O. Adejoye

Abstract:

Calmodulin is one of the intracellular calcium proteins that regulates large spectrum of enzymes and cellular functions including metabolism of cyclic nucleotides and glycogen. The potentials of calmodulin gene in fungi necessitates their genetic response and their strong cassette of enzyme secretions for pesticide degradation. Therefore, this study was carried out to investigate the ‘Transcriptomic’ response of calmodulin encoding genes in Talaromyces fungi in response to 2, 2-dichlorovinyl dimethyl phosphate (DDVP or Dichlorvos) an organophosphate pesticide and γ-Hexachlorocyclohexane (Lindane) an organochlorine pesticide. Fungi strains isolated from rhizosphere from grasses rhizosphere in pesticide polluted sites were subjected to percentage incidence test. Two most frequent fungi were further characterized using ITS gene amplification (ITS1 and ITS4 combinations), they were thereafter subjected to In-vitro DDVP and lindane tolerance tests at different concentrations. They were also screened for presence and expression of calmodulin gene (caM) using RT-PCR technique. The two Talaromyces strains had the highest incidence of 50-72% in pesticide polluted site, they were both identified as Talaromyces astroroseus asemoG and Talaromyces purpurogenum asemoN submitted in NCBI gene-bank with accession numbers KY488464 and KY488468 respectively. T. astroroseus KY488464 tolerated DDVP (1.23±0.023 cm) and lindane (1.11±0.018 cm) at 25 % concentration while T. purpurogenum KY488468 tolerated DDVP (1.33±0.061 cm) and lindane (1.54±0.077 cm) at this concentration. Calmodulin gene was detected in both strains, but RT-PCR expression of caM gene revealed at 900-1000 bp showed an under-expression of caM in T. astrorosues KY488464 but overexpressed in T. purpurogenum KY488464. Thus, the calmodulin gene response of these fungal strains to both pesticides could be considered in monitoring the potentials of fungal strains to pesticide tolerance and bioremediation of pesticide in polluted soil.

Keywords: Calmodulin gene, pesticide, RT-PCR, talaromyces, tolerance

Procedia PDF Downloads 225
1 Detection and Expression of Peroxidase Genes in Trichoderma harzianum KY488466 and Its Response to Crude Oil Degradation

Authors: Michael Dare Asemoloye, Segun Gbolagade Jonathan, Rafiq Ahmad, Odunayo Joseph Olawuyi, D. O. Adejoye

Abstract:

Fungi have potentials for degrading hydrocarbons through the secretion of different enzymes. Crude oil tolerance and degradation by Trichoderma harzianum was investigated in this study with its ability to produce peroxidase enzymes (LiP and MnP). Many fungal strains were isolated from rhizosphere of grasses growing on a crude oil spilled site, and the most frequent strain based on percentage incidence was further characterized using morphological and molecular characteristics. Molecular characterization was done through the amplification of Ribosomal-RNA regions of 18s (1609-1627) and 28s (287-266) using ITS1 and ITS4 combinations and it was identified using NCBI BLAST tool. The selected fungus was also subjected to an in-vitro tolerance test at crude oil concentrations of 5, 10, 15, 20 and 25% while 0% served as control. In addition, lignin peroxidase genes (lig1-6) and manganese peroxidase gene (mnp) were detected and expressed in this strain using RT-PCR technique, its peroxidase producing activities was also studied in aliquots (U/ml). This strain had highest incidence of 80%, it was registered in NCBI as Trichoderma harzianum asemoJ KY488466. The strain KY488466 responded to crude oil concentrations as it increase, the dose inhibition response percentage (DIRP) increased from 41.67 to 95.41 at 5 to 25 % crude oil concentrations. All the peroxidase genes are present in KY488466, and expressed with amplified 900-1000 bp through RT-PCR technique. In this strain, lig2, lig4 and mnp genes were over-expressed, lig 6 was moderately expressed, while none of the genes was under-expressed. The strain also produced 90±0.87 U/ml lignin peroxidase and 120±1.23 U/mil manganese peroxidase enzymes in aliquots. These results imply that KY488466 can tolerate and survive high crude oil concentration and could be exploited for bioremediation of oil-spilled soils, the produced peroxidase enzymes could also be exploited for other biotechnological experiments.

Keywords: crude oil, enzymes, expression, peroxidase genes, tolerance, Trichoderma harzianum

Procedia PDF Downloads 229