Search results for: multi-layer neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3864

Search results for: multi-layer neural networks

1704 Collaboration between Grower and Research Organisations as a Mechanism to Improve Water Efficiency in Irrigated Agriculture

Authors: Sarah J. C. Slabbert

Abstract:

The uptake of research as part of the diffusion or adoption of innovation by practitioners, whether individuals or organisations, has been a popular topic in agricultural development studies for many decades. In the classical, linear model of innovation theory, the innovation originates from an expert source such as a state-supported research organisation or academic institution. The changing context of agriculture led to the development of the agricultural innovation systems model, which recognizes innovation as a complex interaction between individuals and organisations, which include private industry and collective action organisations. In terms of this model, an innovation can be developed and adopted without any input or intervention from a state or parastatal research organisation. This evolution in the diffusion of agricultural innovation has put forward new challenges for state or parastatal research organisations, which have to demonstrate the impact of their research to the legislature or a regulatory authority: Unless the organisation and the research it produces cross the knowledge paths of the intended audience, there will be no awareness, no uptake and certainly no impact. It is therefore critical for such a research organisation to base its communication strategy on a thorough understanding of the knowledge needs, information sources and knowledge networks of the intended target audience. In 2016, the South African Water Research Commission (WRC) commissioned a study to investigate the knowledge needs, information sources and knowledge networks of Water User Associations and commercial irrigators with the aim of improving uptake of its research on efficient water use in irrigation. The first phase of the study comprised face-to-face interviews with the CEOs and Board Chairs of four Water User Associations along the Orange River in South Africa, and 36 commercial irrigation farmers from the same four irrigation schemes. Intermediaries who act as knowledge conduits to the Water User Associations and the irrigators were identified and 20 of them were subsequently interviewed telephonically. The study found that irrigators interact regularly with grower organisations such as SATI (South African Table Grape Industry) and SAPPA (South African Pecan Nut Association) and that they perceive these organisations as credible, trustworthy and reliable, within their limitations. State and parastatal research institutions, on the other hand, are associated with a range of negative attributes. As a result, the awareness of, and interest in, the WRC and its research on water use efficiency in irrigated agriculture are low. The findings suggest that a communication strategy that involves collaboration with these grower organisations would empower the WRC to participate much more efficiently and with greater impact in agricultural innovation networks. The paper will elaborate on the findings and discuss partnering frameworks and opportunities to manage perceptions and uptake.

Keywords: agricultural innovation systems, communication strategy, diffusion of innovation, irrigated agriculture, knowledge paths, research organisations, target audiences, water use efficiency

Procedia PDF Downloads 112
1703 Evaluation and Analysis of ZigBee-Based Wireless Sensor Network: Home Monitoring as Case Study

Authors: Omojokun G. Aju, Adedayo O. Sule

Abstract:

ZigBee wireless sensor and control network is one of the most popularly deployed wireless technologies in recent years. This is because ZigBee is an open standard lightweight, low-cost, low-speed, low-power protocol that allows true operability between systems. It is built on existing IEEE 802.15.4 protocol and therefore combines the IEEE 802.15.4 features and newly added features to meet required functionalities thereby finding applications in wide variety of wireless networked systems. ZigBee‘s current focus is on embedded applications of general-purpose, inexpensive, self-organising networks which requires low to medium data rates, high number of nodes and very low power consumption such as home/industrial automation, embedded sensing, medical data collection, smart lighting, safety and security sensor networks, and monitoring systems. Although the ZigBee design specification includes security features to protect data communication confidentiality and integrity, however, when simplicity and low-cost are the goals, security is normally traded-off. A lot of researches have been carried out on ZigBee technology in which emphasis has mainly been placed on ZigBee network performance characteristics such as energy efficiency, throughput, robustness, packet delay and delivery ratio in different scenarios and applications. This paper investigate and analyse the data accuracy, network implementation difficulties and security challenges of ZigBee network applications in star-based and mesh-based topologies with emphases on its home monitoring application using the ZigBee ProBee ZE-10 development boards for the network setup. The paper also expose some factors that need to be considered when designing ZigBee network applications and suggest ways in which ZigBee network can be designed to provide more resilient to network attacks.

Keywords: home monitoring, IEEE 802.14.5, topology, wireless security, wireless sensor network (WSN), ZigBee

Procedia PDF Downloads 382
1702 Survey of Communication Technologies for IoT Deployments in Developing Regions

Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen

Abstract:

The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them. A detailed review of each of the list of papers selected for the study is included in section III of this document. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs), as summarized in Table 1, are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The prevailing challenges of the different architectures are discussed and summarized in Table 3 of the IV section, where the main problem is the obstruction of communication paths by buildings, trees, hills, etc.

Keywords: communication technologies, environmental monitoring, Internet of Things, IoT deployment challenges

Procedia PDF Downloads 84
1701 Cultural Heritage, Urban Planning and the Smart City in Indian Context

Authors: Paritosh Goel

Abstract:

The conservation of historic buildings and historic Centre’s over recent years has become fully encompassed in the planning of built-up areas and their management following climate changes. The approach of the world of restoration, in the Indian context on integrated urban regeneration and its strategic potential for a smarter, more sustainable and socially inclusive urban development introduces, for urban transformations in general (historical centers and otherwise), the theme of sustainability. From this viewpoint, it envisages, as a primary objective, a real “green, ecological or environmental” requalification of the city through interventions within the main categories of sustainability: mobility, energy efficiency, use of sources of renewable energy, urban metabolism (waste, water, territory, etc.) and natural environment. With this the concept of a “resilient city” is also introduced, which can adapt through progressive transformations to situations of change which may not be predictable, behavior that the historical city has always been able to express. Urban planning on the other hand, has increasingly focused on analyses oriented towards the taxonomic description of social/economic and perceptive parameters. It is connected with human behavior, mobility and the characterization of the consumption of resources, in terms of quantity even before quality to inform the city design process, which for ancient fabrics, and mainly affects the public space also in its social dimension. An exact definition of the term “smart city” is still essentially elusive, since we can attribute three dimensions to the term: a) That of a virtual city, evolved based on digital networks and web networks b) That of a physical construction determined by urban planning based on infrastructural innovation, which in the case of historic Centre’s implies regeneration that stimulates and sometimes changes the existing fabric; c) That of a political and social/economic project guided by a dynamic process that provides new behavior and requirements of the city communities that orients the future planning of cities also through participation in their management. This paper is a preliminary research into the connections between these three dimensions applied to the specific case of the fabric of ancient cities with the aim of obtaining a scientific theory and methodology to apply to the regeneration of Indian historical Centre’s. The Smart city scheme if contextualize with heritage of the city it can be an initiative which intends to provide a transdisciplinary approach between various research networks (natural sciences, socio-economics sciences and humanities, technological disciplines, digital infrastructures) which are united in order to improve the design, livability and understanding of urban environment and high historical/cultural performance levels.

Keywords: historical cities regeneration, sustainable restoration, urban planning, smart cities, cultural heritage development strategies

Procedia PDF Downloads 281
1700 The Development of an Agent-Based Model to Support a Science-Based Evacuation and Shelter-in-Place Planning Process within the United States

Authors: Kyle Burke Pfeiffer, Carmella Burdi, Karen Marsh

Abstract:

The evacuation and shelter-in-place planning process employed by most jurisdictions within the United States is not informed by a scientifically-derived framework that is inclusive of the behavioral and policy-related indicators of public compliance with evacuation orders. While a significant body of work exists to define these indicators, the research findings have not been well-integrated nor translated into useable planning factors for public safety officials. Additionally, refinement of the planning factors alone is insufficient to support science-based evacuation planning as the behavioral elements of evacuees—even with consideration of policy-related indicators—must be examined in the context of specific regional transportation and shelter networks. To address this problem, the Federal Emergency Management Agency and Argonne National Laboratory developed an agent-based model to support regional analysis of zone-based evacuation in southeastern Georgia. In particular, this model allows public safety officials to analyze the consequences that a range of hazards may have upon a community, assess evacuation and shelter-in-place decisions in the context of specified evacuation and response plans, and predict outcomes based on community compliance with orders and the capacity of the regional (to include extra-jurisdictional) transportation and shelter networks. The intention is to use this model to aid evacuation planning and decision-making. Applications for the model include developing a science-driven risk communication strategy and, ultimately, in the case of evacuation, the shortest possible travel distance and clearance times for evacuees within the regional boundary conditions.

Keywords: agent-based modeling for evacuation, decision-support for evacuation planning, evacuation planning, human behavior in evacuation

Procedia PDF Downloads 231
1699 The Effectiveness of Logotherapy in Alleviating Social Isolation for Visually Impaired Students

Authors: Mohamed M. Elsherbiny, Ahmed T. Helal Ibrahim

Abstract:

Social isolation is one of the common problems faced visual impaired students especially in new situations. It refers to lack of interactions with others (students, staff members, and others) and dissatisfaction of social networks with others. In addition, it means "a lack of quantity and quality of social contacts". The situation became more complicated if we know that visual impaired students at Sultan Qaboos University were in special schools for the blind completely away from any integration with regular student, which may lead to isolation for being with regular students for the first time. Because the researcher is an academic advisor for all blind students in the College of Arts and Social Sciences at Sultan Qaboos University, he has noted (from the regular meetings with them) some aspects of isolation and many complaints from staff which motivated the researcher to try to alleviate the problem. Logotherapy is an important therapy used in clinical social work with various problems to help children and young people who are facing problems related to the lack of meaning in their life. So, the aim of the therapy is to find meaning in life and to be satisfied with that life. The basic meaning for visual impaired students in this study is to provide opportunities to build relationships and friendships with others and help them to be satisfied about interactions with their networks. The study aimed to identify whether there is a relationship between the use of logotherapy and alleviating social isolation for visual impaired students. This study is considered one of the quasi-experimental studies, the researcher has used experimental method. The researcher used one design which is before and after experiment on two groups, one control (did not apply to the therapy) and experimental group which is applied to the therapy. About the study tools, social isolation scale (SIS) was used to assess the degree of isolation. The sample was (20) of the visually impaired students at the College of Arts and Social Sciences, Sultan Qaboos University. The results showed the effectiveness of logotherapy in alleviating isolation for students.

Keywords: social isolation, logotherapy, visually impaired, disability

Procedia PDF Downloads 377
1698 Artificial Intelligence Technologies Used in Healthcare: Its Implication on the Healthcare Workforce and Applications in the Diagnosis of Diseases

Authors: Rowanda Daoud Ahmed, Mansoor Abdulhak, Muhammad Azeem Afzal, Sezer Filiz, Usama Ahmad Mughal

Abstract:

This paper discusses important aspects of AI in the healthcare domain. The increase of data in healthcare both in size and complexity, opens more room for artificial intelligence applications. Our focus is to review the main AI methods within the scope of the health care domain. The results of the review show that recommendations for diagnosis and recommendations for treatment, patent engagement, and administrative tasks are the key applications of AI in healthcare. Understanding the potential of AI methods in the domain of healthcare would benefit healthcare practitioners and will improve patient outcomes.

Keywords: AI in healthcare, technologies of AI, neural network, future of AI in healthcare

Procedia PDF Downloads 110
1697 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model

Authors: Amit R. Bhende, G. K. Awari

Abstract:

Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.

Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis

Procedia PDF Downloads 434
1696 Older Consumer’s Willingness to Trust Social Media Advertising: A Case of Australian Social Media Users

Authors: Simon J. Wilde, David M. Herold, Michael J. Bryant

Abstract:

Social media networks have become the hotbed for advertising activities due mainly to their increasing consumer/user base and, secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional media, such as broadcast media and print media, and, more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilized as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: (1) Gen Z/Millennials Reliability = 4.90/7 vs. Gen X/Boomers Reliability = 4.34/7; (2) Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and (3) Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioral intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users in an attempt to foster positive behavioral responses from within this large demographic group – whose engagement with social media sites continues to increase year on year.

Keywords: social media advertising, trust, older consumers, internet studies

Procedia PDF Downloads 37
1695 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 22
1694 An Analysis of Twitter Use of Slow Food Movement in the Context of Online Activism

Authors: Kubra Sultan Yuzuncuyil, Aytekin İsman, Berkay Bulus

Abstract:

With the developments of information and communication technologies, the forms of molding public opinion have changed. In the presence of Internet, the notion of activism has been endowed with digital codes. Activists have engaged the use of Internet into their campaigns and the process of creating collective identity. Activist movements have been incorporating the relevance of new communication technologies for their goals and opposition. Creating and managing activism through Internet is called Online Activism. In this main, Slow Food Movement which was emerged within the philosophy of defending regional, fair and sustainable food has been engaging Internet into their activist campaign. This movement supports the idea that a new food system which allows strong connections between plate and planet is possible. In order to make their voices heard, it has utilized social networks and develop particular skills in the framework online activism. This study analyzes online activist skills of Slow Food Movement (SFM) develop and attempts to measure its effectiveness. To achieve this aim, it adopts the model proposed by Sivitandies and Shah and conduct both qualitiative and quantiative content analysis on social network use of Slow Food Movement. In this regard, the sample is chosen as the official profile and analyzed between in a three month period respectively March-May 2017. It was found that SFM develops particular techniques that appeal to the model of Sivitandies and Shah. The prominent skill in this regard was found as hyperlink abbreviation and use of multimedia elements. On the other hand, there are inadequacies in hashtag and interactivity use. The importance of this study is that it highlights and discusses how online activism can be engaged into a social movement. It also reveals current online activism skills of SFM and their effectiveness. Furthermore, it makes suggestions to enhance the related abilities and strengthen its voice on social networks.

Keywords: slow food movement, Twitter, internet, online activism

Procedia PDF Downloads 279
1693 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 220
1692 The Correlation between Air Pollution and Tourette Syndrome

Authors: Mengnan Sun

Abstract:

It is unclear about the association between air pollution and Tourette Syndrome (TS), although people have suspected that air pollution might trigger TS. TS is a type of neural system disease usually found among children. The number of TS patients has significantly increased in recent decades, suggesting an importance and urgency to examine the possible triggers or conditions that are associated with TS. In this study, the correlation between air pollution and three allergic diseases---asthma, allergic conjunctivitis (AC), and allergic rhinitis (AR)---is examined. Then, a correlation between these allergic diseases and TS is proved. In this way, this study establishes a positive correlation between air pollution and TS. Measures the public can take to help TS patients are also analyzed at the end of this article. The article hopes to raise people’s awareness to reduce air pollution for the good of TS patients or people with other disorders that are associated with air pollution.

Keywords: air pollution, allergic diseases, climate change, Tourette Syndrome

Procedia PDF Downloads 61
1691 Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders

Authors: Akim Borbuev, Francisco de León

Abstract:

Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.

Keywords: DC power systems, distribution feeders, distribution networks, power transfer capacity

Procedia PDF Downloads 127
1690 An Exploration of Cyberspace Security, Strategy for a New Era

Authors: Laxmi R. Kasaraneni

Abstract:

The Internet connects all the networks, including the nation’s critical infrastructure that are used extensively by not only a nation’s government and military to protect sensitive information and execute missions, but also the primary infrastructure that provides services that enable modern conveniences such as education, potable water, electricity, natural gas, and financial transactions. It has become the central nervous system for the government, the citizens, and the industries. When it is attacked, the effects can ripple far and wide impacts not only to citizens’ well-being but nation’s economy, civil infrastructure, and national security. As such, these critical services may be targeted by malicious hackers during cyber warfare, it is imperative to not only protect them and mitigate any immediate or potential threats, but to also understand the current or potential impacts beyond the IT networks or the organization. The Nation’s IT infrastructure which is now vital for communication, commerce, and control of our physical infrastructure, is highly vulnerable to attack. While existing technologies can address some vulnerabilities, fundamentally new architectures and technologies are needed to address the larger structural insecurities of an infrastructure developed in a more trusting time when mass cyber attacks were not foreseen. This research is intended to improve the core functions of the Internet and critical-sector information systems by providing a clear path to create a safe, secure, and resilient cyber environment that help stakeholders at all levels of government, and the private sector work together to develop the cybersecurity capabilities that are key to our economy, national security, and public health and safety. This research paper also emphasizes the present and future cyber security threats, the capabilities and goals of cyber attackers, a strategic concept and steps to implement cybersecurity for maximum effectiveness, enabling technologies, some strategic assumptions and critical challenges, and the future of cyberspace.

Keywords: critical challenges, critical infrastructure, cyber security, enabling technologies, national security

Procedia PDF Downloads 294
1689 From Homogeneous to Phase Separated UV-Cured Interpenetrating Polymer Networks: Influence of the System Composition on Properties and Microstructure

Authors: Caroline Rocco, Feyza Karasu, Céline Croutxé-Barghorn, Xavier Allonas, Maxime Lecompère, Gérard Riess, Yujing Zhang, Catarina Esteves, Leendert van der Ven, Rolf van Benthem Gijsbertus de With

Abstract:

Acrylates are widely used in UV-curing technology. Their high reactivity can, however, limit their conversion due to early vitrification. In addition, the free radical photopolymerization is known to be sensitive to oxygen inhibition leading to tacky surfaces. Although epoxides can lead to full polymerization, they are sensitive to humidity and exhibit low polymerization rate. To overcome the intrinsic limitations of both classes of monomers, Interpenetrating Polymer Networks (IPNs) can be synthesized. They consist of at least two cross linked polymers which are permanently entangled. They can be achieved under thermal and/or light induced polymerization in one or two steps approach. IPNs can display homogeneous to heterogeneous morphologies with various degrees of phase separation strongly linked to the monomer miscibility and also synthesis parameters. In this presentation, we synthesize UV-cured methacrylate - epoxide based IPNs with different chemical compositions in order to get a better understanding of their formation and phase separation. Miscibility before and during the photopolymerization, reaction kinetics, as well as mechanical properties and morphology have been investigated. The key parameters controlling the morphology and the phase separation, namely monomer miscibility and synthesis parameters have been identified. By monitoring the stiffness changes on the film surface, atomic force acoustic microscopy (AFAM) gave, in conjunction with polymerization kinetic profiles and thermomechanical properties, explanations and corroborated the miscibility predictions. When varying the methacrylate / epoxide ratio, it was possible to move from a miscible and highly-interpenetrated IPN to a totally immiscible and phase-separated one.

Keywords: investigation of properties and morphology, kinetics, phase separation, UV-cured IPNs

Procedia PDF Downloads 366
1688 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators

Authors: Fathi Abid, Bilel Kaffel

Abstract:

The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.

Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode

Procedia PDF Downloads 338
1687 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks

Authors: Muneeb Ullah, Daishihan, Xiadong Young

Abstract:

Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.

Keywords: classification, deep learning, medical images, CXR, GAN.

Procedia PDF Downloads 95
1686 Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions by Leaf and Stem Biochar Derived from Lantana camara: Adsorption Kinetics, Equilibrium, Thermodynamics and Possible Mechanism

Authors: Deepa Kundu, Prabhakar Sharma, Sayan Bhattacharya, Jianying Shang

Abstract:

The discharge of dye-containing effluents in the water bodies has raised concern due to the potential hazards related to their toxicity in the environment. There are various treatment technologies available for the removal of dyes from wastewaters. The use of biosorbent to remove dyes from wastewater is one of the effective and inexpensive techniques. In the study, the adsorption of phenothiazine dye methylene blue onto biosorbent prepared from Lantana camara L. has been studied in aqueous solutions. The batch adsorption experiments were conducted and the effects of various parameters such as pH (3-12), contact time, adsorbent dose (100-400 mg/L), initial dye concentration (5-20 mg/L), and temperature (303, 313 and 323 K) were investigated. The prepared leaf (BCL600) and shoot (BCS600) biochar of Lantana were characterized using FTIR, SEM, elemental analysis, and zeta potential (pH~7). A comparison between the adsorption potential of both the biosorbent was also evaluated. The results indicated that the amount of methylene blue dye (mg/g) adsorbed onto the surface of biochar was highly dependent on the pH of the dye solutions as it increased with an increase in pH from 3 to 12. It was observed that the dye treated with BCS600 and BCL600 attained an equilibrium within 60 and 100 minutes, respectively. The rate of the adsorption process was determined by performing the Lagergren pseudo-first-order and pseudo-second-order kinetics. It was found that dye treated with both BCS600 and BCL600 followed pseudo-second-order kinetics implying the multi-step nature of the adsorption process involving external adsorption and diffusion of dye molecules into the interior of the adsorbents. The data obtained from batch experiments were fitted well with Langmuir and Freundlich isotherms (R² > 0.98) to indicate the multilayer adsorption of dye over the biochar surfaces. The thermodynamic studies revealed that the adsorption process is favourable, spontaneous, and endothermic in nature. Based on the results, the inexpensive and easily available Lantana camara biomass can be used to remove methylene blue dye from wastewater. It can also help in managing the growth of the notorious weed in the environment.

Keywords: adsorption kinetics, biochar, Lantana camara, methylene blue dye, possible mechanism, thermodynamics

Procedia PDF Downloads 134
1685 Infrastructure Development – Stages in Development

Authors: Seppo Sirkemaa

Abstract:

Information systems infrastructure is the basis of business systems and processes in the company. It should be a reliable platform for business processes and activities but also have the flexibility to change business needs. The development of an infrastructure that is robust, reliable, and flexible is a challenge. Understanding technological capabilities and business needs is a key element in the development of successful information systems infrastructure.

Keywords: development, information technology, networks, technology

Procedia PDF Downloads 117
1684 The Comparison between bFGF and Small Molecules in Derivation of Chicken Primordial Germ Cells and Embryonic Germ Cells

Authors: Maryam Farzaneh, Seyyedeh Nafiseh Hassani, Hossein Baharvand

Abstract:

Objective: Chicken gonadal tissue has a two population such primordial germ cells (PGCs) and stromal cells (somatic cells). PGCs and embryonic germ cells (EGCs) that is a pluripotent type of PGCs in long-term culture are suitable sources for the production of chicken pluripotent stem cell lines, transgenic birds, vaccine and recombinant protein production. In general, the effect of growth factors such bFGF and mouse LIF on derivation of PGCs in vitro are important and in this study we could see the unique effect of small molecules such PD032 and SB43 as a chemical, in comparison to growth factors. Materials and Methods: After incubation of fertilized chicken egg up to 6 days and isolation of primary gonadal tissues and culture of mixed cells like PGCs and stromal cells. PGCs proliferate in the present of fetal calf serum (FCS) and small molecules and in another group bFGF, that these factors are important for PGCs culture and derivation. Somatic cells produce a multilayer feeder under the PGCs in primary culture and PGCs make a small cluster under these cells. Results: In present of small molecules and high volume of FCS (15%), the present of EGCs as a pluripotent stem cells were clear four weeks, that they had a positive immune-staining and periodic acid-Schiff staining (PAS), but in present of growth factors like bFGF without any chemicals, the present of PGCs were clear but after 7 until 10 days, there were disappear. Conclusion: Until now we have seen many researches about derivation and maintenance of chicken PGCs, in the hope of understanding the mechanisms that occur during germline development and production of a therapeutic product by transgenic birds. There are still many unknowns in this area and this project will try to have efficient conditions for identification of suitable culture medium for long-term culture of PGCs in vitro without serum and feeder cells.

Keywords: chicken gonadal primordial germ cells, pluripotent stem cells, growth factors, small molecules, transgenic birds

Procedia PDF Downloads 432
1683 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 81
1682 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience

Authors: Al-Amin, Huanjun Jiang, Anayat Ali

Abstract:

Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.

Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network

Procedia PDF Downloads 85
1681 A Numerical Model for Simulation of Blood Flow in Vascular Networks

Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia

Abstract:

An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.

Keywords: blood flow, morphometric data, vascular tree, Strahler ordering system

Procedia PDF Downloads 271
1680 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application

Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro

Abstract:

In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.

Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype

Procedia PDF Downloads 158
1679 Teaching Translation in Brazilian Universities: A Study about the Possible Impacts of Translators’ Comments on the Cyberspace about Translator Education

Authors: Erica Lima

Abstract:

The objective of this paper is to discuss relevant points about teaching translation in Brazilian universities and the possible impacts of blogs and social networks to translator education today. It is intended to analyze the curricula of Brazilian translation courses, contrasting them to information obtained from two social networking groups of great visibility in the area concerning essential characteristics to become a successful profession. Therefore, research has, as its main corpus, a few undergraduate translation programs’ syllabuses, as well as a few postings on social networks groups that specifically share professional opinions regarding the necessity for a translator to obtain a degree in translation to practice the profession. To a certain extent, such comments and their corresponding responses lead to the propagation of discourses which influence the ideas that aspiring translators and recent graduates end up having towards themselves and their undergraduate courses. The postings also show that many professionals do not have a clear position regarding the translator education; while refuting it, they also encourage “free” courses. It is thus observed that cyberspace constitutes, on the one hand, a place of mobilization of people in defense of similar ideas. However, on the other hand, it embodies a place of tension and conflict, in view of the fact that there are many participants and, as in any other situation of interlocution, disagreements may arise. From the postings, aspects related to professionalism were analyzed (including discussions about regulation), as well as questions about the classic dichotomies: theory/practice; art/technique; self-education/academic training. As partial result, the common interest regarding the valorization of the profession could be mentioned, although there is no consensus on the essential characteristics to be a good translator. It was also possible to observe that the set of socially constructed representations in the group reflects characteristics of the world situation of the translation courses (especially in some European countries and in the United States), which, in the first instance, does not accurately reflect the Brazilian idiosyncrasies of the area.

Keywords: cyberspace, teaching translation, translator education, university

Procedia PDF Downloads 387
1678 Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City

Authors: Mohammed Alruwaili‬

Abstract:

Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation.

Keywords: renewable energy, smart grid, efficiency, distribution network

Procedia PDF Downloads 140
1677 Neural Correlates of Arabic Digits Naming

Authors: Fernando Ojedo, Alejandro Alvarez, Pedro Macizo

Abstract:

In the present study, we explored electrophysiological correlates of Arabic digits naming to determine semantic processing of numbers. Participants named Arabic digits grouped by category or intermixed with exemplars of other semantic categories while the N400 event-related potential was examined. Around 350-450 ms after the presentation of Arabic digits, brain waves were more positive in anterior regions and more negative in posterior regions when stimuli were grouped by category relative to the mixed condition. Contrary to what was found in other studies, electrophysiological results suggested that the production of numerals involved semantic mediation.

Keywords: Arabic digit naming, event-related potentials, semantic processing, number production

Procedia PDF Downloads 581
1676 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 150
1675 The Right of Taiwanese Individuals with Mental Illnesses to Participate in Medical Decision-Making

Authors: Ying-Lun Tseng Chiu-Ying Chen

Abstract:

Taiwan's Mental Health Act was amended at the end of 2022; they added regulations regarding refusing compulsory treatment by patients with mental illnesses. In addition, not only by an examination committee, the judge must also assess the patient's need for compulsory treatment. Additionally, the maximum of compulsory hospitalization has been reduced from an unlimited period to a maximum of 60 days. They aim to promote the healthcare autonomy of individuals with mental illnesses in Taiwan and prevent their silenced voice in medical decision-making while they still possess rationality. Furthermore, they plan to use community support and social care networks to replace the current practice of compulsory treatment in Taiwan. This study uses qualitative research methodology, utilizing interview guidelines to inquire about the experiences of Taiwanese who have undergone compulsory hospitalization, compulsory community treatment, and compulsory medical care. The interviews aimed to explore their feelings when they were subjected to compulsory medical intervention, the inside of their illness, their opinions after treatments, and whether alternative medical interventions proposed by them were considered. Additionally, participants also asked about their personal life history and their support networks in their lives. We collected 12 Taiwanese who had experienced compulsory medical interventions and were interviewed 14 times. The findings indicated that participants still possessed rationality during the onset of their illness. However, when they have other treatments to replace compulsory medical, they sometimes diverge from those of the doctors and their families. Finally, doctors prefer their professional judgment and patients' families' option. Therefore, Taiwanese mental health patients' power of decision-making still needs to improve. Because this research uses qualitative research, so difficult to find participants, and the sample size rate was smaller than Taiwan's population, it may have biases in the analysis. So, Taiwan still has significant progress in enhancing the decision-making rights of participants in the study.

Keywords: medical decision making, compulsory treatment, medical ethics, mental health act

Procedia PDF Downloads 80