Search results for: modified simplex algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5895

Search results for: modified simplex algorithm

3885 Liability Aspects Related to Genetically Modified Food under the Food Safety Legislation in India

Authors: S. K. Balashanmugam, Padmavati Manchikanti, S. R. Subramanian

Abstract:

The question of legal liability over injury arising out of the import and the introduction of GM food emerges as a crucial issue confronting to promote GM food and its derivatives. There is a greater possibility of commercialized GM food from the exporting country to enter importing country where status of approval shall not be same. This necessitates the importance of fixing a liability mechanism to discuss the damage, if any, occurs at the level of transboundary movement or at the market. There was a widespread consensus to develop the Cartagena Protocol on Biosafety and to give for a dedicated regime on liability and redress in the form of Nagoya Kuala Lumpur Supplementary Protocol on the Liability and Redress (‘N-KL Protocol’) at the international context. The national legal frameworks based on this protocol are not adequately established in the prevailing food legislations of the developing countries. The developing economy like India is willing to import GM food and its derivatives after the successful commercialization of Bt Cotton in 2002. As a party to the N-KL Protocol, it is indispensable for India to formulate a legal framework and to discuss safety, liability, and regulatory issues surrounding GM foods in conformity to the provisions of the Protocol. The liability mechanism is also important in the case where the risk assessment and risk management is still in implementing stage. Moreover, the country is facing GM infiltration issues with its neighbors Bangladesh. As a precautionary approach, there is a need to formulate rules and procedure of legal liability to discuss any kind of damage occurs at transboundary trade. In this context, the proposed work will attempt to analyze the liability regime in the existing Food Safety and Standards Act, 2006 from the applicability and domestic compliance and to suggest legal and policy options for regulatory authorities.

Keywords: commercialization, food safety, FSSAI, genetically modified foods, India, liability

Procedia PDF Downloads 356
3884 Implementation of Fuzzy Version of Block Backward Differentiation Formulas for Solving Fuzzy Differential Equations

Authors: Z. B. Ibrahim, N. Ismail, K. I. Othman

Abstract:

Fuzzy Differential Equations (FDEs) play an important role in modelling many real life phenomena. The FDEs are used to model the behaviour of the problems that are subjected to uncertainty, vague or imprecise information that constantly arise in mathematical models in various branches of science and engineering. These uncertainties have to be taken into account in order to obtain a more realistic model and many of these models are often difficult and sometimes impossible to obtain the analytic solutions. Thus, many authors have attempted to extend or modified the existing numerical methods developed for solving Ordinary Differential Equations (ODEs) into fuzzy version in order to suit for solving the FDEs. Therefore, in this paper, we proposed the development of a fuzzy version of three-point block method based on Block Backward Differentiation Formulas (FBBDF) for the numerical solution of first order FDEs. The three-point block FBBDF method are implemented in uniform step size produces three new approximations simultaneously at each integration step using the same back values. Newton iteration of the FBBDF is formulated and the implementation is based on the predictor and corrector formulas in the PECE mode. For greater efficiency of the block method, the coefficients of the FBBDF are stored at the start of the program. The proposed FBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing fuzzy version of the Modified Simpson and Euler methods in terms of the accuracy of the approximated solutions. The numerical results show that the FBBDF method performs better in terms of accuracy when compared to the Euler method when solving the FDEs.

Keywords: block, backward differentiation formulas, first order, fuzzy differential equations

Procedia PDF Downloads 321
3883 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups

Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski

Abstract:

In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.

Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection

Procedia PDF Downloads 147
3882 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm

Authors: Thanh Noi Phan, Martin Kappas, Jan Degener

Abstract:

The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.

Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam

Procedia PDF Downloads 390
3881 Arabic Lexicon Learning to Analyze Sentiment in Microblogs

Authors: Mahmoud B. Rokaya

Abstract:

The study of opinion mining and sentiment analysis includes analysis of opinions, sentiments, evaluations, attitudes, and emotions. The rapid growth of social media, social networks, reviews, forum discussions, microblogs, and Twitter, leads to a parallel growth in the field of sentiment analysis. The field of sentiment analysis tries to develop effective tools to make it possible to capture the trends of people. There are two approaches in the field, lexicon-based and corpus-based methods. A lexicon-based method uses a sentiment lexicon which includes sentiment words and phrases with assigned numeric scores. These scores reveal if sentiment phrases are positive or negative, their intensity, and/or their emotional orientations. Creation of manual lexicons is hard. This brings the need for adaptive automated methods for generating a lexicon. The proposed method generates dynamic lexicons based on the corpus and then classifies text using these lexicons. In the proposed method, different approaches are combined to generate lexicons from text. The proposed method classifies the tweets into 5 classes instead of +ve or –ve classes. The sentiment classification problem is written as an optimization problem, finding optimum sentiment lexicons are the goal of the optimization process. The solution was produced based on mathematical programming approaches to find the best lexicon to classify texts. A genetic algorithm was written to find the optimal lexicon. Then, extraction of a meta-level feature was done based on the optimal lexicon. The experiments were conducted on several datasets. Results, in terms of accuracy, recall and F measure, outperformed the state-of-the-art methods proposed in the literature in some of the datasets. A better understanding of the Arabic language and culture of Arab Twitter users and sentiment orientation of words in different contexts can be achieved based on the sentiment lexicons proposed by the algorithm.

Keywords: social media, Twitter sentiment, sentiment analysis, lexicon, genetic algorithm, evolutionary computation

Procedia PDF Downloads 190
3880 Exact Solutions of K(N,N)-Type Equations Using Jacobi Elliptic Functions

Authors: Edamana Krishnan, Khalil Al-Ghafri

Abstract:

In this paper, modified K(n,n) and K(n+1,n+1) equations have been solved using mapping methods which give a variety of solutions in terms of Jacobi elliptic functions. The solutions when m approaches 0 and 1, with m as the modulus of the JEFs have also been deduced. The role of constraint conditions has been discussed.

Keywords: travelling wave solutions, solitary wave solutions, compactons, Jacobi elliptic functions, mapping methods

Procedia PDF Downloads 305
3879 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles

Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl

Abstract:

Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.

Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor

Procedia PDF Downloads 223
3878 Investigation of the Morphology of SiO2 Nano-Particles Using Different Synthesis Techniques

Authors: E. Gandomkar, S. Sabbaghi

Abstract:

In this paper, the effects of variation synthesized methods on morphology and size of silica nanostructure via modifying sol-gel and precipitation method have been investigated. Meanwhile, resulting products have been characterized by particle size analyzer, scanning electron microscopy (SEM), X-ray Diffraction (XRD) and Fourier transform infrared (FT-IR) spectra. As result, the shape of SiO2 with sol-gel and precipitation methods was spherical but with modifying sol-gel method we have been had nanolayer structure.

Keywords: modified sol-gel, precipitation, nanolayer, Na2SiO3, nanoparticle

Procedia PDF Downloads 293
3877 A Feasibility Study of Waste (d) Potential: Synergistic Effect Evaluation by Co-digesting Organic Wastes and Kinetics of Biogas Production

Authors: Kunwar Paritosh, Sanjay Mathur, Monika Yadav, Paras Gandhi, Subodh Kumar, Nidhi Pareek, Vivekanand Vivekanand

Abstract:

A significant fraction of energy is wasted every year managing the biodegradable organic waste inadequately as development and sustainability are the inherent enemies. The management of these waste is indispensable to boost its optimum utilization by converting it to renewable energy resource (here biogas) through anaerobic digestion and to mitigate greenhouse gas emission. Food and yard wastes may prove to be appropriate and potential feedstocks for anaerobic co-digestion for biogas production. The present study has been performed to explore the synergistic effect of co-digesting food waste and yard trimmings from MNIT campus for enhanced biogas production in different ratios in batch tests (37±10C, 90 rpm, 45 days). The results were overwhelming and showed that blending two different organic waste in proper ratio improved the biogas generation considerably, with the highest biogas yield (2044±24 mLg-1VS) that was achieved at 75:25 of food waste to yard waste ratio on volatile solids (VS) basis. The yield was 1.7 and 2.2 folds higher than the mono-digestion of food or yard waste (1172±34, 1016±36mLg-1VS) respectively. The increase in biogas production may be credited to optimum C/N ratio resulting in higher yield. Also Adding TiO2 nanoparticles showed virtually no effect on biogas production as sometimes nanoparticles enhance biogas production. ICP-MS, FTIR analysis was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for the kinetic study of biogas production where modified Gompertz model showed goodness-of-fit (R2=0.9978) with the experimental results.

Keywords: anaerobic co-digestion, biogas, kinetics, nanoparticle, organic waste

Procedia PDF Downloads 389
3876 Baricitinib Lipid-based Nanosystems as a Topical Alternative for Atopic Dermatitis Treatment

Authors: N. Garrós, P. Bustos, N. Beirampour, R. Mohammadi, M. Mallandrich, A.C. Calpena, H. Colom

Abstract:

Atopic dermatitis (AD) is a persistent skin condition characterized by chronic inflammation caused by an autoimmune response. It is a prevalent clinical issue that requires continual treatment to enhance the patient's quality of life. Systemic therapy often involves the use of glucocorticoids or immunosuppressants to manage symptoms. Our objective was to create and assess topical liposomal formulations containing Baricitinib (BNB), a reversible inhibitor of Janus-associated kinase (JAK), which is involved in various immune responses. These formulations were intended to address flare-ups and improve treatment outcomes for AD. We created three distinct liposomal formulations by combining different amounts of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), cholesterol (CHOL), and ceramide (CER): (i) pure POPC, (ii) POPC mixed with CHOL (at a ratio of 8:2, mol/mol), and (iii) POPC mixed with CHOL and CER (at a ratio of 3.6:2.4:4.0 mol/mol/mol). We conducted various tests to determine the formulations' skin tolerance, irritancy capacity, and their ability to cause erythema and edema on altered skin. We also assessed the transepidermal water loss (TEWL) and skin hydration of rabbits to evaluate the efficacy of the formulations. Histological analysis, the HET-CAM test, and the modified Draize test were all used in the evaluation process. The histological analysis revealed that liposome POPC and POPC:CHOL avoided any damage to the tissues structures. The HET-CAM test showed no irritation effect caused by any of the three liposomes, and the modified Draize test showed a good Draize score for erythema and edema. Liposome POPC effectively counteracted the impact of xylol on the skin, and no erythema or edema was observed during the study. TEWL values were constant for all the liposomes with similar values to the negative control (within the range 8 - 15 g/h·m2, which means a healthy value for rabbits), whereas the positive control showed a significant increase. The skin hydration values were constant and followed the trend of the negative control, while the positive control showed a steady increase during the tolerance study. In conclusion, the developed formulations containing BNB exhibited no harmful or irritating effects, they did not demonstrate any irritant potential in the HET-CAM test and liposomes POPC and POPC:CHOL did not cause any structural alteration according to the histological analysis. These positive findings suggest that additional research is necessary to evaluate the efficacy of these liposomal formulations in animal models of the disease, including mutant animals. Furthermore, before proceeding to clinical trials, biochemical investigations should be conducted to better understand the mechanisms of action involved in these formulations.

Keywords: baricitinib, HET-CAM test, histological study, JAK inhibitor, liposomes, modified draize test

Procedia PDF Downloads 93
3875 Some Issues with Extension of an HPC Cluster

Authors: Pil Seong Park

Abstract:

Homemade HPC clusters are widely used in many small labs, because they are easy to build and cost-effective. Even though incremental growth is an advantage of clusters, it results in heterogeneous systems anyhow. Instead of adding new nodes to the cluster, we can extend clusters to include some other Internet servers working independently on the same LAN, so that we can make use of their idle times, especially during the night. However extension across a firewall raises some security problems with NFS. In this paper, we propose a method to solve such a problem using SSH tunneling, and suggest a modified structure of the cluster that implements it.

Keywords: extension of HPC clusters, security, NFS, SSH tunneling

Procedia PDF Downloads 428
3874 Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid

Authors: Ahmed Ismail, Mustafa Baysal

Abstract:

Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.

Keywords: active and reactive power sharing, distributed generation, droop control, microgrid

Procedia PDF Downloads 593
3873 Resource Creation Using Natural Language Processing Techniques for Malay Translated Qur'an

Authors: Nor Diana Ahmad, Eric Atwell, Brandon Bennett

Abstract:

Text processing techniques for English have been developed for several decades. But for the Malay language, text processing methods are still far behind. Moreover, there are limited resources, tools for computational linguistic analysis available for the Malay language. Therefore, this research presents the use of natural language processing (NLP) in processing Malay translated Qur’an text. As the result, a new language resource for Malay translated Qur’an was created. This resource will help other researchers to build the necessary processing tools for the Malay language. This research also develops a simple question-answer prototype to demonstrate the use of the Malay Qur’an resource for text processing. This prototype has been developed using Python. The prototype pre-processes the Malay Qur’an and an input query using a stemming algorithm and then searches for occurrences of the query word stem. The result produced shows improved matching likelihood between user query and its answer. A POS-tagging algorithm has also been produced. The stemming and tagging algorithms can be used as tools for research related to other Malay texts and can be used to support applications such as information retrieval, question answering systems, ontology-based search and other text analysis tasks.

Keywords: language resource, Malay translated Qur'an, natural language processing (NLP), text processing

Procedia PDF Downloads 320
3872 The Predictors of Head and Neck Cancer-Head and Neck Cancer-Related Lymphedema in Patients with Resected Advanced Head and Neck Cancer

Authors: Shu-Ching Chen, Li-Yun Lee

Abstract:

The purpose of the study was to identify the factors associated with head and neck cancer-related lymphoedema (HNCRL)-related symptoms, body image, and HNCRL-related functional outcomes among patients with resected advanced head and neck cancer. A cross-sectional correlational design was conducted to examine the predictors of HNCRL-related functional outcomes in patients with resected advanced head and neck cancer. Eligible patients were recruited from a single medical center in northern Taiwan. Consecutive patients were approached and recruited from the Radiation Head and Neck Outpatient Department of this medical center. Eligible subjects were assessed for the Symptom Distress Scale–Modified for Head and Neck Cancer (SDS-mhnc), Brief International Classification of Functioning, Disability and Health (ICF) Core Set for Head and Neck Cancer (BCSQ-H&N), Body Image Scale–Modified (BIS-m), The MD Anderson Head and Neck Lymphedema Rating Scale (MDAHNLRS), The Foldi’s Stages of Lymphedema (Foldi’s Scale), Patterson’s Scale, UCLA Shoulder Rating Scale (UCLA SRS), and Karnofsky’s Performance Status Index (KPS). The results showed that the worst problems with body HNCRL functional outcomes. Patients’ HNCRL symptom distress and performance status are robust predictors across over for overall HNCRL functional outcomes, problems with body HNCRL functional outcomes, and activity and social functioning HNCRL functional outcomes. Based on the results of this period research program, we will develop a Cancer Rehabilitation and Lymphedema Care Program (CRLCP) to use in the care of patients with resected advanced head and neck cancer.

Keywords: head and neck cancer, resected, lymphedema, symptom, body image, functional outcome

Procedia PDF Downloads 261
3871 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem

Authors: Kapse Swapnil, K. Shankar

Abstract:

Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.

Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam

Procedia PDF Downloads 520
3870 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system

Procedia PDF Downloads 143
3869 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 361
3868 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 328
3867 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and WOB are used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036m3/h and -2.374m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. Quantitatively calculate the best combination of funnel viscosity, final shear force and drilling time. The minimum loss rate of lost circulation wells in Shunbei area is 10m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: drilling and completion, drilling fluid, lost circulation, loss rate, main controlling factors, unmanned intervention algorithm

Procedia PDF Downloads 113
3866 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method

Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum

Abstract:

Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.

Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method

Procedia PDF Downloads 94
3865 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization

Procedia PDF Downloads 302
3864 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)

Procedia PDF Downloads 213
3863 Impact of Heat Moisture Treatment on the Yield of Resistant Starch and Evaluation of Functional Properties of Modified Mung Bean (Vigna radiate) Starch

Authors: Sreejani Barua, P. P. Srivastav

Abstract:

Formulation of new functional food products for diabetes patients and obsessed people is a challenge for food industries till date. Starch is a certainly happening, ecological, reasonable and profusely obtainable polysaccharide in plant material. In the present scenario, there is a great interest in modifying starch functional properties without destroying its granular structure using different modification techniques. Resistant starch (RS) contains almost zero calories and can control blood glucose level to prevent diabetes. The current study focused on modification of mung bean starch which is a good source of legumes carbohydrate for the production of functional food. Heat moisture treatment (HMT) of mung starch was conducted at moisture content of 10-30%, temperature of 80-120 °C and time of 8-24 h.The content of resistant starch after modification was significantly increased from native starches containing RS 7.6%. The design combinations of HMT had been completed through Central Composite Rotatable Design (CCRD). The effects of HMT process variables on the yield of resistant starch was studied through Rapid Surface Methodology (RSM). The highest increase of resistant starch was found up to 34.39% when treated the native starch with 30% m.c at 120 °C temperature for 24 h.The functional properties of both native and modified mung bean starches showed that there was a reduction in the swelling power and swelling volume of HMT starches. However, the solubility of the HMT starches was higher than that of untreated native starch and also observed change in structural (scanning electron microscopy), X-Ray diffraction (XRD) pattern, blue value and thermal (differential scanning calorimetry) properties. Therefore, replacing native mung bean starch with heat-moisture treated mung bean starch leads to the development of new products with higher resistant starch levels and functional properties.

Keywords: Mung bean starch, heat moisture treatment, functional properties, resistant starch

Procedia PDF Downloads 203
3862 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model

Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle

Abstract:

In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.

Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model

Procedia PDF Downloads 103
3861 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 295
3860 Algorithm for Automatic Real-Time Electrooculographic Artifact Correction

Authors: Norman Sinnigen, Igor Izyurov, Marina Krylova, Hamidreza Jamalabadi, Sarah Alizadeh, Martin Walter

Abstract:

Background: EEG is a non-invasive brain activity recording technique with a high temporal resolution that allows the use of real-time applications, such as neurofeedback. However, EEG data are susceptible to electrooculographic (EOG) and electromyography (EMG) artifacts (i.e., jaw clenching, teeth squeezing and forehead movements). Due to their non-stationary nature, these artifacts greatly obscure the information and power spectrum of EEG signals. Many EEG artifact correction methods are too time-consuming when applied to low-density EEG and have been focusing on offline processing or handling one single type of EEG artifact. A software-only real-time method for correcting multiple types of EEG artifacts of high-density EEG remains a significant challenge. Methods: We demonstrate an improved approach for automatic real-time EEG artifact correction of EOG and EMG artifacts. The method was tested on three healthy subjects using 64 EEG channels (Brain Products GmbH) and a sampling rate of 1,000 Hz. Captured EEG signals were imported in MATLAB with the lab streaming layer interface allowing buffering of EEG data. EMG artifacts were detected by channel variance and adaptive thresholding and corrected by using channel interpolation. Real-time independent component analysis (ICA) was applied for correcting EOG artifacts. Results: Our results demonstrate that the algorithm effectively reduces EMG artifacts, such as jaw clenching, teeth squeezing and forehead movements, and EOG artifacts (horizontal and vertical eye movements) of high-density EEG while preserving brain neuronal activity information. The average computation time of EOG and EMG artifact correction for 80 s (80,000 data points) 64-channel data is 300 – 700 ms depending on the convergence of ICA and the type and intensity of the artifact. Conclusion: An automatic EEG artifact correction algorithm based on channel variance, adaptive thresholding, and ICA improves high-density EEG recordings contaminated with EOG and EMG artifacts in real-time.

Keywords: EEG, muscle artifacts, ocular artifacts, real-time artifact correction, real-time ICA

Procedia PDF Downloads 181
3859 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network

Authors: P. Singh, R. M. Banik

Abstract:

Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.

Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network

Procedia PDF Downloads 431
3858 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model

Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis

Abstract:

In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.

Keywords: cause of failure, linear degradation path, reliability function, expectation-maximization algorithm, intensity, masked data

Procedia PDF Downloads 336
3857 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss

Procedia PDF Downloads 477
3856 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms

Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri

Abstract:

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.

Keywords: connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks

Procedia PDF Downloads 244