Search results for: intelligent object
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1923

Search results for: intelligent object

3 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System

Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes

Abstract:

The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.

Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models

Procedia PDF Downloads 65
2 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 56
1 “SockGEL/PLUG” Injectable Smart/Intelligent and Bio-Inspired Sol-Gel Nanomaterials for Simple and Complex Oro-Dental and Cranio-Maxillo-Facial Interventional Applications

Authors: Ziyad S. Haidar

Abstract:

Millions of teeth are removed annually, and dental extraction is one of the most commonly performed surgical procedures globally. Whether due to caries, periodontal disease or trauma, exodontia and the ensuing wound healing and bone remodeling processes of the resultant socket (hole in the jaw bone) usually result in serious deformities of the residual alveolar osseous ridge and surrounding soft tissues (reduced height/width). Such voluminous changes render the placement of a proper conventional bridge, denture or even an implant-supported prosthesis extremely challenging. Further, most extractions continue to be performed with no regard for preventing the onset of alveolar osteitis (also known as dry socket, a painful and difficult-to-treat/-manage condition post-exodontia). Hence, such serious resorptive morphological changes often result in significant facial deformities and a negative impact on the overall Quality of Life (QoL) of patients (and oral health-related QoL), alarming, particularly for the geriatric with compromised healing and in light of the thriving longevity statistics. Opportunity: Despite advances in tissue/wound grafting, serious limitations continue to exist, including efficacy and clinical outcome predictability, cost, treatment time, expertise and risk of immune reactions. For cases of dry sockets, specifically, the commercially-available and often-prescribed home remedies are highly lacking. Indeed, most are not recommended for use anymore. Alveogyl is a fine example. Hence, there is a great market demand and need for alternative solutions. Solution: Herein, SockGEL/PLUG (patent pending), an all-natural, drug-free and injectable stimuli-responsive hydrogel, was designed, formulated, characterized and evaluated as an osteogenic, angiogenic, anti-microbial and pain-soothing suture-free intra-alveolar dressing, safe and efficacious for use in several oro-dental and cranio-maxillo-facial interventional applications; for example: in fresh dental extraction sockets, immediately post-exodontia. It is composed of FDA-approved, biocompatible and biodegradable polymers, self-assembled electro-statically to formulate a scaffolding matrix to (a) prevent the onset of alveolar osteitis via securing the fibrin-clot in situ and protecting/sealing the socket from contamination/infection; and (b) endogenously promote/accelerate wound healing and bone remodeling to preserve the volume of the alveolus. Findings: The intrinsic properties of the SockGEL/PLUG hydrogel were evaluated physico-chemico-mechanically for safety (cell viability), viscosity, rheology, bio-distribution and essentially, capacity to induce wound healing and osteogenesis (small defect, in vivo) without any signaling cues from exogenous cells, growth factors or drugs. The performed animal model of cranial critical-sized and non-vascularized bone defects shall provide vitally critical insights into the role and mechanism of the employed natural bio-polymer blend and gel product in endogenous reparative regeneration of soft tissues and bone morphogenesis. Alongside, the fine-tuning of our modified formulation method will further tackle appropriateness, reproducibility, scalability, ease and speed in producing stable, biodegradable and sterilizable stimuli (thermo-sensitive and photo-responsive) matrices (3-dimensional interpenetrating yet porous polymeric network) suitable for an intra-socket application, and beyond. Conclusions and Perspective: Findings are anticipated to provide sufficient evidence to translate into pilot clinical trials and validate the bionanomaterial before engaging the market for feasibility, acceptance and cost-effectiveness studies. The SockGEL/PLUG platform is patent pending: SockGEL is a bio-inspired drug-free hydrogel; SockPLUG is a drug-loaded hydrogel designed for complex indications.

Keywords: hydrogel, injectable, dentistry, craniomaxillofacial complex, bioinspired, nanobiotechnology, biopolymer, sol-gel, stimuli-responsive, matrix, tissue engineering, regenerative medicine

Procedia PDF Downloads 55