Search results for: current efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14715

Search results for: current efficiency

13005 The Evaluation of Current Pile Driving Prediction Methods for Driven Monopile Foundations in London Clay

Authors: John Davidson, Matteo Castelletti, Ismael Torres, Victor Terente, Jamie Irvine, Sylvie Raymackers

Abstract:

The current industry approach to pile driving predictions consists of developing a model of the hammer-pile-soil system which simulates the relationship between soil resistance to driving (SRD) and blow counts (or pile penetration per blow). The SRD methods traditionally used are broadly based on static pile capacity calculations. The SRD is used in combination with the one-dimensional wave equation model to indicate the anticipated blowcounts with depth for specific hammer energy settings. This approach has predominantly been calibrated on relatively long slender piles used in the oil and gas industry but is now being extended to allow calculations to be undertaken for relatively short rigid large diameter monopile foundations. This paper evaluates the accuracy of current industry practice when applied to a site where large diameter monopiles were installed in predominantly stiff fissured clay. Actual geotechnical and pile installation data, including pile driving records and signal matching analysis (based upon pile driving monitoring techniques), were used for the assessment on the case study site.

Keywords: driven piles, fissured clay, London clay, monopiles, offshore foundations

Procedia PDF Downloads 225
13004 Deficits and Solutions in the Development of Modular Factory Systems

Authors: Achim Kampker, Peter Burggräf, Moritz Krunke, Hanno Voet

Abstract:

As a reaction to current challenges in factory planning, many companies think about introducing factory standards to lower planning times and decrease planning costs. If these factory standards are set-up with a high level of modularity, they are defined as modular factory systems. This paper deals with the main current problems in the application of modular factory systems in practice and presents a solution approach with its basic models. The methodology is based on methods from factory planning but also uses the tools of other disciplines like product development or technology management to deal with the high complexity, which the development of modular factory systems implies. The four basic models that such a methodology has to contain are introduced and pointed out.

Keywords: factory planning, modular factory systems, factory standards, cost-benefit analysis

Procedia PDF Downloads 595
13003 An Electrochemical Study on Ethanol Oxidation with Pt/Pd Composite Electrodes in Sodium Hydroxide Solution

Authors: Yu-Chen Luo, Wan-Tzu Yen, I-Ping Liu, Po-Hsuan Yeh, Yuh-Lang Lee

Abstract:

The use of a Pt electrode leads to high catalytic efficiency in the ethanol electro-oxidation. However, the carbon monoxide (CO) released in the reaction will poison the Pt surfaces, lowering the electrocatalytic activity. In this study, composite electrodes are prepared to overcome the poisoning issue, and the related electro-oxidation behaviors are studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). An electroless plating method is utilized to deposit Pt catalytic layers on the Pd film-coated FTO substrates. According to the SEIRAS spectra, the carbon dioxide signal of the Pt/Pd composite electrode is larger than that of the Pt one, whereas the CO signal of the composite electrode is relatively smaller. This result suggests that the studied Pt/Pd electrode has a better ability against CO poisoning. The CV analyses are conducted in alkaline environments, and current densities related to the ethanol oxidation in the forward scan (If) and to the CO poisoning in the backward scan (Ib) are measured. A higher ratio of If to Ib (If/Ib) usually represents a better ability against the poisoning effect. The If/Ib values are 2.53 and 2.07 for the Pt and Pt/Pd electrodes, respectively, which is possibly attributed to the increasing ability of CO adsorption of Pt electrode. Despite the lower If/Ib, the Pt/Pd composite electrode shows a higher ethanol oxidation performance in the alkaline system than the Pt does. Furthermore, its stability is also superior.

Keywords: cyclic voltammogram, electroless deposition, ethanol electro-oxidation, surface-enhanced infrared absorption spectroscopy

Procedia PDF Downloads 119
13002 Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser

Authors: Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Højgaard Jensen

Abstract:

Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware-in-the-loop (HiL) test for the AVR of SC to test the steady-state and dynamic performances of AVR in different operating conditions. Startup procedure of the system and voltage set point changes are studied to evaluate the AVR hardware response. Overexcitation, underexcitation, and AVR set point loss are tested to compare the performance of SC with the AVR hardware and that of simulation. The comparative results demonstrate how AVR will work in a real system. The results show HiL test is an effective approach for testing devices before deployment and is able to parameterize the controller with lower cost, higher efficiency, and more flexibility.

Keywords: automatic voltage regulator, hardware-in-the-loop, synchronous condenser, real time digital simulator

Procedia PDF Downloads 251
13001 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures

Procedia PDF Downloads 357
13000 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization

Procedia PDF Downloads 382
12999 Performance Assessment of Recycled Alum Sludge in the Treatment of Textile Industry Effluent in South Africa

Authors: Tony Ngoy Mbodi, Christophe Muanda

Abstract:

Textile industry is considered as one of the most polluting sectors in terms of effluent volume of discharge and wastewater composition, such as dye, which represents an environmental hazard when discharged without any proper treatment. A study was conducted to investigate the capability of the use of recycled alum sludge (RAS) as an alternative treatment for the reduction of colour, chemical oxygen demand (COD), total dissolved solids (TDS) and pH adjustment from dye based synthetic textile industry wastewater. The coagulation/flocculation process was studied for coagulants of Alum:RAS ratio of, 1:1, 2:1, 1:2 and 0:1. Experiments on treating the synthetic wastewater using membrane filtration and adsorption with corn cobs were also conducted. Results from the coagulation experiment were compared to those from adsorption with corn cobs and membrane filtration experiments conducted on the same synthetic wastewater. The results of the RAS experiments were also evaluated against standard guidelines for industrial effluents treated for discharge purposes in order to establish its level of compliance. Based on current results, it can be concluded that reusing the alum sludge as a low-cost material pretreatment method into the coagulation/flocculation process can offer some advantages such as high removal efficiency for disperse dye and economic savings on overall treatment of the industry wastewater.

Keywords: alum, coagulation/flocculation, dye, recycled alum sludge, textile wastewater

Procedia PDF Downloads 353
12998 Innovative Ideas through Collaboration with Potential Users

Authors: Martin Hewing, Katharina Hölzle

Abstract:

Organizations increasingly use environmental stimuli and ideas from users within participatory innovation processes in order to tap new sources of knowledge. The research presented in this article focuses on users who shape the distant edges of markets and currently are not using products and services from a domain– so called potential users. Those users at the peripheries are perceived to contribute more novel information, by which they better reflect shifts in needs and behavior than current users in the core market. Their contributions in collaborative and creative problem-solving processes and how they generate ideas for discontinuous innovations are of particular interest. With an experimental design, we compare ideas from potential and current users and analyze the effects of cognitive distance in collaboration and the utilization of explicit and tacit knowledge. We find potential users to generate more original ideas, particularly when they collaborate with someone experienced within the domain. Their ideas are most obviously characterized by an increased level of surprise and unusualness compared to dominant designs, which is rooted in contexts and does not require technological leaps. Collaboration with potential users can therefore result in new ways to leverage technological competences. Furthermore, the cross-fertilization arising from cognitive distance between a potential and a current user is asymmetric due to differences in the nature of their utilized knowledge and personal objectives. This paper discusses implications for innovation research and the management of early innovation processes.

Keywords: user collaboration, co-creation, discontinuous innovation, innovation research

Procedia PDF Downloads 505
12997 Using the Delphi Method to Determine the Change in Knowledge and Skills of Professional Quantity Surveyors as a Result of COVID-19 Pandemic

Authors: Veronica Kah Jo Wong, Yoke Mui Lim, Nurul Sakina Mokhtar Azizi

Abstract:

The impact on the construction industry in Malaysia is unprecedented, as the government implemented a lockdown to restrict human movement in an effort to stop COVID-19 from spreading. Quantity surveyor (QS), as one of the key construction professionals, found that the working practices and environments for quantity surveyors today have changed due to the current pandemic. The QS profession must deal not only with changes in project issues but also with a different working environment in which most people are required to work from home and follow the standard operating procedures. Therefore, QS should be flexible, agile, and have the capability to adapt to the current working practices by strengthening their competencies. Adapting to the current and recovering environment of COVID-19 may result in the emergence of a new competence such as skill and knowledge for QS in order to maintain the quality of performance in the delivery of their professional services. Thus, this paper's objective is to investigate the changes in knowledge and skills in quantity surveyors. The data will be collected through interviews with registered professional QS to gain better insights that are specific in this industry, and the findings will be verified using the Delphi method. It is hoped that new knowledge and skill will be found from the study and will not only contribute to the betterment of the professional QS but also in guiding higher learning institutions to incorporate the new competencies into their curriculum.

Keywords: competency, COVID-19 pandemic, Malaysia, quantity surveying

Procedia PDF Downloads 129
12996 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads

Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza

Abstract:

This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.

Keywords: divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver

Procedia PDF Downloads 464
12995 Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System

Authors: Sara Khamseh, Elahe Sharifi

Abstract:

321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy.

Keywords: COF, mechanical properties, microstructure, (Nb: Si: a-C) coatings, Wear rate

Procedia PDF Downloads 90
12994 Effect of Film Cooling on Gas-Turbine Engine Turbine

Authors: Burak Kaplan, Ünver Kaynak

Abstract:

Gas turbine engines, crucial for modern aviation and power generation, rely on the efficient operation of turbine blades. However, extreme temperatures and pressures can lead to material degradation and failure. Film cooling, a widely employed technique, injects a coolant onto the blade surface to mitigate the effects of hot gas exposure. This research investigates the impact of film cooling on gas turbine engine performance, focusing on its influence on efficiency, longevity, and overall engine performance. Through a comprehensive literature review, computational fluid dynamics simulations, and thermal performance analysis, this study aims to provide insights into optimizing film cooling configurations for enhanced engine performance. The research explores the thermal performance characteristics of turbine blades with and without film cooling, the influence of various film cooling techniques on engine efficiency, and the design factors that optimize film cooling effectiveness. The findings of this study have the potential to contribute to the development of more efficient and reliable gas turbine engines, ultimately advancing the field of gas turbine technology.

Keywords: gas turbine, engine, cooling, blade, optimization

Procedia PDF Downloads 0
12993 Iterative Dynamic Programming for 4D Flight Trajectory Optimization

Authors: Kawser Ahmed, K. Bousson, Milca F. Coelho

Abstract:

4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution.

Keywords: 4D waypoint navigation, iterative dynamic programming, obstacle avoidance, trajectory optimization

Procedia PDF Downloads 162
12992 A Tool to Measure Efficiency and Trust Towards eXplainable Artificial Intelligence in Conflict Detection Tasks

Authors: Raphael Tuor, Denis Lalanne

Abstract:

The ATM research community is missing suitable tools to design, test, and validate new UI prototypes. Important stakes underline the implementation of both DSS and XAI methods into current systems. ML-based DSS are gaining in relevance as ATFM becomes increasingly complex. However, these systems only prove useful if a human can understand them, and thus new XAI methods are needed. The human-machine dyad should work as a team and should understand each other. We present xSky, a configurable benchmark tool that allows us to compare different versions of an ATC interface in conflict detection tasks. Our main contributions to the ATC research community are (1) a conflict detection task simulator (xSky) that allows to test the applicability of visual prototypes on scenarios of varying difficulty and outputting relevant operational metrics (2) a theoretical approach to the explanations of AI-driven trajectory predictions. xSky addresses several issues that were identified within available research tools. Researchers can configure the dimensions affecting scenario difficulty with a simple CSV file. Both the content and appearance of the XAI elements can be customized in a few steps. As a proof-of-concept, we implemented an XAI prototype inspired by the maritime field.

Keywords: air traffic control, air traffic simulation, conflict detection, explainable artificial intelligence, explainability, human-automation collaboration, human factors, information visualization, interpretability, trajectory prediction

Procedia PDF Downloads 160
12991 The Response of 4-Hydroxybenzoic Acid on Kv1.4 Potassium Channel Subunit Expressed in Xenopus laevis Oocytes

Authors: Fatin H. Mohamad, Jia H. Wong, Muhammad Bilal, Abdul A. Mohamed Yusoff, Jafri M. Abdullah, Jingli Zhang

Abstract:

Kv1.4 is a Shaker-related member of voltage-gated potassium channel which can be associated with cardiac action potential but can also be found in Schaffer collateral and dentate gyrus. It has two inactivation mechanisms; the fast N-type and slow C-type. Kv1.4 produces rapid current inactivation. This A type potential of Kv1.4 makes it as a target in antiepileptic drugs (AEDs) selection. In this study, 4-hydroxybenzoic acid, which can be naturally found in bamboo shoots, were tested on its enhancement effect on potassium current of Kv1.4 channel expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp method. Current obtained were recorded and analyzed with pClamp software whereas statistical analysis were done by student t-test. The ratio of final / peak amplitude is an index of the activity of the Kv1.4 channel. The less the ratio, the greater the function of Kv1.4. The decrease of ratio of which by 1µM 4-hydroxybenzoic acid (n= 7), compared with 0.1% DMSO (vehicle), was mean= 47.62%, SE= 13.76%, P= 0.026 (statistically significant). It indicated more opening of Kv1.4 channels under 4-hydroxybenzoic acid. In conclusion, 4-hydroxybenzoic acid can enhance the function of Kv1.4 potassium channels, which is regarded as one of the mechanisms of antiepileptic treatment.

Keywords: antiepileptic, Kv1.4 potassium channel, two-microelectrode voltage clamp, Xenopus laevis oocytes, 4-hydroxybenzoic acid

Procedia PDF Downloads 362
12990 A Group Setting of IED in Microgrid Protection Management System

Authors: Jyh-Cherng Gu, Ming-Ta Yang, Chao-Fong Yan, Hsin-Yung Chung, Yung-Ruei Chang, Yih-Der Lee, Chen-Min Chan, Chia-Hao Hsu

Abstract:

There are a number of distributed generations (DGs) installed in microgrid, which may have diverse path and direction of power flow or fault current. The overcurrent protection scheme for the traditional radial type distribution system will no longer meet the needs of microgrid protection. Integrating the intelligent electronic device (IED) and a supervisory control and data acquisition (SCADA) with IEC 61850 communication protocol, the paper proposes a microgrid protection management system (MPMS) to protect power system from the fault. In the proposed method, the MPMS performs logic programming of each IED to coordinate their tripping sequence. The GOOSE message defined in IEC 61850 is used as the transmission information medium among IEDs. Moreover, to cope with the difference in fault current of microgrid between grid-connected mode and islanded mode, the proposed MPMS applies the group setting feature of IED to protect system and robust adaptability. Once the microgrid topology varies, the MPMS will recalculate the fault current and update the group setting of IED. Provided there is a fault, IEDs will isolate the fault at once. Finally, the Matlab/Simulink and Elipse Power Studio software are used to simulate and demonstrate the feasibility of the proposed method.

Keywords: IEC 61850, IED, group Setting, microgrid

Procedia PDF Downloads 463
12989 Design of Cylindrical Crawler Robot Inspired by Amoeba Locomotion

Authors: Jun-ya Nagase

Abstract:

Recently, the need of colonoscopy is increasing because of the rise of colonic disorder including cancer of the colon. However, current colonoscopy depends on doctor's skill strongly. Therefore, a large intestine endoscope that does not depend on the techniques of a doctor with high safety is required. In this research, we aim at development a novel large intestine endoscope that can realize safe insertion without specific techniques. A wheel movement type robot, a snake-like robot and an earthworm-like robot are all described in the relevant literature as endoscope robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a small cylindrical crawler robot inspired by amoeba locomotion, which does not need large space to move and which has high ground-covering ability, is proposed. In addition, we developed a prototype of the large intestine endoscope using the proposed crawler mechanism. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.

Keywords: tracked-crawler, endoscopic robot, narrow path, amoeba locomotion.

Procedia PDF Downloads 384
12988 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-doped with Bismuth and Zinc

Authors: B.Benalioua, I.Benyamina, A.Bentouami, B.Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, Zn co-doped TiO2 treated at 670°C for 2 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi-Zn-TiO2 (670°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-Zn-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 70 minutes, whereas with the P25-TiO2 discoloration is achieved after 120 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping

Procedia PDF Downloads 311
12987 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-Doped with Sulfur and Nitrogen

Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the S, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material S-N-TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the S-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of S-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic S-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping

Procedia PDF Downloads 363
12986 MFCA: An Environmental Management Accounting Technique for Optimal Resource Efficiency in Production Processes

Authors: Omolola A. Tajelawi, Hari L. Garbharran

Abstract:

Revenue leakages are one of the major challenges manufacturers face in production processes, as most of the input materials that should emanate as products from the lines are lost as waste. Rather than generating income from material input which is meant to end-up as products, losses are further incurred as costs in order to manage waste generated. In addition, due to the lack of a clear view of the flow of resources on the lines from input to output stage, acquiring information on the true cost of waste generated have become a challenge. This has therefore given birth to the conceptualization and implementation of waste minimization strategies by several manufacturing industries. This paper reviews the principles and applications of three environmental management accounting tools namely Activity-based Costing (ABC), Life-Cycle Assessment (LCA) and Material Flow Cost Accounting (MFCA) in the manufacturing industry and their effectiveness in curbing revenue leakages. The paper unveils the strengths and limitations of each of the tools; beaming a searchlight on the tool that could allow for optimal resource utilization, transparency in production process as well as improved cost efficiency. Findings from this review reveal that MFCA may offer superior advantages with regards to the provision of more detailed information (both in physical and monetary terms) on the flow of material inputs throughout the production process compared to the other environmental accounting tools. This paper therefore makes a case for the adoption of MFCA as a viable technique for the identification and reduction of waste in production processes, and also for effective decision making by production managers, financial advisors and other relevant stakeholders.

Keywords: MFCA, environmental management accounting, resource efficiency, waste reduction, revenue losses

Procedia PDF Downloads 336
12985 Air Pollution Control from Rice Shellers - a Case Study

Authors: S. M. Ahuja

Abstract:

A Rice Sheller is used for obtaining polished white rice from paddy. There are about 3000 Rice Shellers in Punjab and 50000 in India. During the process of shelling lot of dust is emitted from different unit operations like paddy silo, paddy shaker, bucket elevators, huskers, paddy separator etc. These dust emissions have adverse effect on the health of the workers and the wear and tear of the shelling machinery is also fast. All the dust emissions spewing out of these unit operations of a rice Sheller were contained by providing suitable hoods and enclosures while ensuring their workability. These were sucked by providing an induced draft fan followed by a high efficiency cyclone separator that has got an overall dust collection efficiency of more than 90 %. This cyclone separator replaced two cyclone separators and a filter bag house, which the Rice Sheller was already having. The dust concentration in the stack after the installation of cyclone separator is well within the stipulated standards. Besides controlling pollution there is improvement in the quality of products like bran and the life of shelling machinery has also enhanced. The payback period of this technology is less than four shelling months.

Keywords: air pollution, cyclone separator, pneumatic conveying, rice shellers

Procedia PDF Downloads 299
12984 Memristive Properties of Nanostructured Porous Silicon

Authors: Madina Alimova, Margulan Ibraimov, Ayan Tileu

Abstract:

The paper describes methods for obtaining porous structures with the properties of a silicon-based memristor and explains the electrical properties of porous silicon films. Based on the results, there is a positive shift in the current-voltage characteristics (CVC) after each measurement, i.e., electrical properties depend not only on the applied voltage but also on the previous state. After 3 minutes of rest, the film returns to its original state (reset). The method for obtaining a porous silicon nanofilm with the properties of a memristor is simple and does not require additional effort. Based on the measurement results, the typical memristive behavior of the porous silicon nanofilm is analyzed.

Keywords: porous silicon, current-voltage characteristics, memristor, nanofilms

Procedia PDF Downloads 130
12983 Characterization and Antimicrobial Properties of Functional Polypropylene Films Incorporated with AgSiO2, AgZn, and AgZ Useful as Returnable Packaging in Seafood Distribution

Authors: Suman Singh, Myungho Lee, Insik Park, Yangjai Shin, Youn Suk Lee

Abstract:

Active antimicrobial films prepared by incorporating AgSiO2, AgZn, and AgZ at 1%, 3%, 5%, 10% (w/w) into polypropylene (PP) matrix. Complete thermal, structural, mechanical and functional characterization were carried out of all formulations and determined the antimicrobial efficiency and returnable antimicrobial efficiency according to the Japanese Industrial Standard method. The morphology of the films showed agglomerates of particles in the composites. The active formulation had decreased elongation compared to the pure PP sample. Thermal analyses indicated that the active formulation compositions had increased thermal stability. The films showed 50% antimicrobial properties after the fifth wash against the tested microorganisms, presenting better activity against Gram negative organisms than Gram positive ones. These findings suggest that PP films with AgSiO2, AgZn, and AgZ particles could provide a significant contribution to the quality and safety of seafood in the distribution chain.

Keywords: antimicrobial film, properties and characterization, returnable packaging, sea food

Procedia PDF Downloads 364
12982 Evaluation of an Integrated Supersonic System for Inertial Extraction of CO₂ in Post-Combustion Streams of Fossil Fuel Operating Power Plants

Authors: Zarina Chokparova, Ighor Uzhinsky

Abstract:

Carbon dioxide emissions resulting from burning of the fossil fuels on large scales, such as oil industry or power plants, leads to a plenty of severe implications including global temperature raise, air pollution and other adverse impacts on the environment. Besides some precarious and costly ways for the alleviation of CO₂ emissions detriment in industrial scales (such as liquefaction of CO₂ and its deep-water treatment, application of adsorbents and membranes, which require careful consideration of drawback effects and their mitigation), one physically and commercially available technology for its capture and disposal is supersonic system for inertial extraction of CO₂ in after-combustion streams. Due to the flue gas with a carbon dioxide concentration of 10-15 volume percent being emitted from the combustion system, the waste stream represents a rather diluted condition at low pressure. The supersonic system induces a flue gas mixture stream to expand using a converge-and-diverge operating nozzle; the flow velocity increases to the supersonic ranges resulting in rapid drop of temperature and pressure. Thus, conversion of potential energy into the kinetic power causes a desublimation of CO₂. Solidified carbon dioxide can be sent to the separate vessel for further disposal. The major advantages of the current solution are its economic efficiency, physical stability, and compactness of the system, as well as needlessness of addition any chemical media. However, there are several challenges yet to be regarded to optimize the system: the way for increasing the size of separated CO₂ particles (as they are represented on a micrometers scale of effective diameter), reduction of the concomitant gas separated together with carbon dioxide and provision of CO₂ downstream flow purity. Moreover, determination of thermodynamic conditions of the vapor-solid mixture including specification of the valid and accurate equation of state remains to be an essential goal. Due to high speeds and temperatures reached during the process, the influence of the emitted heat should be considered, and the applicable solution model for the compressible flow need to be determined. In this report, a brief overview of the current technology status will be presented and a program for further evaluation of this approach is going to be proposed.

Keywords: CO₂ sequestration, converging diverging nozzle, fossil fuel power plant emissions, inertial CO₂ extraction, supersonic post-combustion carbon dioxide capture

Procedia PDF Downloads 141
12981 Performance Evaluation of On-Site Sewage Treatment System (Johkasou)

Authors: Aashutosh Garg, Ankur Rajpal, A. A. Kazmi

Abstract:

The efficiency of an on-site wastewater treatment system named Johkasou was evaluated based on its pollutant removal efficiency over 10 months. This system was installed at IIT Roorkee and had a capacity of treating 7 m3/d of sewage water, sufficient for a group of 30-50 people. This system was fed with actual wastewater through an equalization tank to eliminate the fluctuations throughout the day. Methanol and ammonium chloride was added into this equalization tank to increase the Chemical Oxygen Demand (COD) and ammonia content of the influent. The outlet from Johkasou is sent to a tertiary unit consisting of a Pressure Sand Filter and an Activated Carbon Filter for further treatment. Samples were collected on alternate days from Monday to Friday and the following parameters were evaluated: Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN). The Average removal efficiency for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN) was observed as 89.6, 97.7, 96, and 80% respectively. The cost of treating the wastewater comes out to be Rs 23/m3 which includes electricity, cleaning and maintenance, chemical, and desludging costs. Tests for the coliforms were also performed and it was observed that the removal efficiency for total and fecal coliforms was 100%. The sludge generation rate is approximately 20% of the BOD removal and it needed to be removed twice a year. It also showed a very good response against the hydraulic shock load. We performed vacation stress analysis on the system to evaluate the performance of the system when there is no influent for 8 consecutive days. From the result of stress analysis, we concluded that system needs a recovery time of about 48 hours to stabilize. After about 2 days, the system returns again to original conditions and all the parameters in the effluent become within the limits of National Green Tribunal (NGT) standards. We also performed another stress analysis to save the electricity in which we turned the main aeration blower off for 2 to 12 hrs a day and the results showed that we can turn the blower off for about 4-6 hrs a day and this will help in reducing the electricity costs by about 25%. It was concluded that the Johkasou system can remove a sufficient amount of all the physiochemical parameters tested to satisfy the prescribed limit set as per Indian Standard.

Keywords: on-site treatment, domestic wastewater, Johkasou, nutrient removal, pathogens removal

Procedia PDF Downloads 115
12980 Parametric Influence and Optimization of Wire-EDM on Oil Hardened Non-Shrinking Steel

Authors: Nixon Kuruvila, H. V. Ravindra

Abstract:

Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi’s Technique and Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are Dimensional Accuracy (DA) and Material Removal Rate (MRR). Experiments were designed as per Taguchi’s L16 Orthogonal Array (OA) where in Pulse-on duration, Pulse-off duration, Current, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Oil Hardened Non Shrinking Steel (OHNS) having the thickness of 40 mm. The results of the study reveals that among the machining parameters it is preferable to go in for lower pulse-off duration for achieving over all good performance. Regarding MRR, OHNS is to be eroded with medium pulse-off duration and higher flush rate. Finally, the validation exercise performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.

Keywords: dimensional accuracy (DA), regression analysis (RA), Taguchi method (TM), volumetric material removal rate (VMRR)

Procedia PDF Downloads 409
12979 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility

Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari

Abstract:

Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.  

Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach

Procedia PDF Downloads 278
12978 Sustainable Manufacturing and Performance of Ceramic Membranes

Authors: Obsi Terfasa, Bhanupriya Das, Mithilish Passawan

Abstract:

The large-scale application of microbial fuel cell (MFC) technology is significantly hindered by the high cost of the commonly used proton exchange membrane, Nafion. This has led to the recent development of ceramic membranes using various clay minerals. This study evaluates the characteristics and potential use of a new ceramic membrane made from potter’s clay © mixed with different proportions (0, 5, 10 wt%) of fly ash (FA), labeled as CFA0, CFA5, CFA10, for cost-effective and sustainable MFC use. Among these, the CFA10 membrane demonstrated superior quality with a fine pore size distribution (average 0.41 μm), which supports higher water uptake and reduced oxygen diffusion. Its oxygen mass transfer coefficient was 4.13 ± 0.13 × 10⁻⁴ cm/s, about 40% lower than the control. X-ray diffraction analysis revealed that the CFA membrane is rich in quartz, which enhances proton conductance and water retention. Electrochemical kinetics studies, including cyclic voltammetry and electrochemical impedance spectroscopy (EIS), also confirmed the effectiveness of the CFA10 membrane in MFC, showing a peak current output of 15.35 mA and low ohmic resistance (78.2 Ω). The novel CFA10 ceramic membrane, incorporating coal fly ash, a waste material, shows promise for high MFC performance at a significantly reduced cost (96%), making it suitable for sustainable scaling up of the technology.

Keywords: ceramic membrane, Coulombic efficiency, electro-chemical kinetics, fly ash, proton conductivity, microbial fuel cell

Procedia PDF Downloads 36
12977 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field

Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf

Abstract:

One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.

Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER

Procedia PDF Downloads 125
12976 Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall

Authors: M. V. Bartashevich

Abstract:

The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia.

Keywords: Heat Flux, Heat Transfer Enhancement, External Blowing, Thin Liquid Film

Procedia PDF Downloads 149