Search results for: absence of radioactive iodine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1604

Search results for: absence of radioactive iodine

14 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 97
13 Phenotype and Psychometric Characterization of Phelan-Mcdermid Syndrome Patients

Authors: C. Bel, J. Nevado, F. Ciceri, M. Ropacki, T. Hoffmann, P. Lapunzina, C. Buesa

Abstract:

Background: The Phelan-McDermid syndrome (PMS) is a genetic disorder caused by the deletion of the terminal region of chromosome 22 or mutation of the SHANK3 gene. Shank3 disruption in mice leads to dysfunction of synaptic transmission, which can be restored by epigenetic regulation with both Lysine Specific Demethylase 1 (LSD1) inhibitors. PMS subjects result in a variable degree of intellectual disability, delay or absence of speech, autistic spectrum disorders symptoms, low muscle tone, motor delays and epilepsy. Vafidemstat is an LSD1 inhibitor in Phase II clinical development with a well-established and favorable safety profile, and data supporting the restoration of memory and cognition defects as well as reduction of agitation and aggression in several animal models and clinical studies. Therefore, vafidemstat has the potential to become a first-in-class precision medicine approach to treat PMS patients. Aims: The goal of this research is to perform an observational trial to psychometrically characterize individuals carrying deletions in SHANK3 and build a foundation for subsequent precision psychiatry clinical trials with vafidemstat. Methodology: This study is characterizing the clinical profile of 20 to 40 subjects, > 16-year-old, with genotypically confirmed PMS diagnosis. Subjects will complete a battery of neuropsychological scales, including the Repetitive Behavior Questionnaire (RBQ), Vineland Adaptive Behavior Scales, Escala de Observación para el Diagnostico del Autismo (Autism Diagnostic Observational Scale) (ADOS)-2, the Battelle Developmental Inventory and the Behavior Problems Inventory (BPI). Results: By March 2021, 19 patients have been enrolled. Unsupervised hierarchical clustering of the results obtained so far identifies 3 groups of patients, characterized by different profiles of cognitive and behavioral scores. The first cluster is characterized by low Battelle age, high ADOS and low Vineland, RBQ and BPI scores. Low Vineland, RBQ and BPI scores are also detected in the second cluster, which in contrast has high Battelle age and low ADOS scores. The third cluster is somewhat in the middle for the Battelle, Vineland and ADOS scores while displaying the highest levels of aggression (high BPI) and repeated behaviors (high RBQ). In line with the observation that female patients are generally affected by milder forms of autistic symptoms, no male patients are present in the second cluster. Dividing the results by gender highlights that male patients in the third cluster are characterized by a higher frequency of aggression, whereas female patients from the same cluster display a tendency toward higher repetitive behavior. Finally, statistically significant differences in deletion sizes are detected comparing the three clusters (also after correcting for gender), and deletion size appears to be positively correlated with ADOS and negatively correlated with Vineland A and C scores. No correlation is detected between deletion size and the BPI and RBQ scores. Conclusions: Precision medicine may open a new way to understand and treat Central Nervous System disorders. Epigenetic dysregulation has been proposed to be an important mechanism in the pathogenesis of schizophrenia and autism. Vafidemstat holds exciting therapeutic potential in PMS, and this study will provide data regarding the optimal endpoints for a future clinical study to explore vafidemstat ability to treat shank3-associated psychiatric disorders.

Keywords: autism, epigenetics, LSD1, personalized medicine

Procedia PDF Downloads 166
12 Translation, Cross-Cultural Adaption, and Validation of the Vividness of Movement Imagery Questionnaire 2 (VMIQ-2) to Classical Arabic Language

Authors: Majid Alenezi, Abdelbare Algamode, Amy Hayes, Gavin Lawrence, Nichola Callow

Abstract:

The purpose of this study was to translate and culturally adapt the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2) from English to produce a new Arabic version (VMIQ-2A), and to evaluate the reliability and validity of the translated questionnaire. The questionnaire assesses how vividly and clearly individuals are able to imagine themselves performing everyday actions. Its purpose is to measure individuals’ ability to conduct movement imagery, which can be defined as “the cognitive rehearsal of a task in the absence of overt physical movement.” Movement imagery has been introduced in physiotherapy as a promising intervention technique, especially when physical exercise is not possible (e.g. pain, immobilisation.) Considerable evidence indicates movement imagery interventions improve physical function, but to maximize efficacy it is important to know the imagery abilities of the individuals being treated. Given the increase in the global sharing of knowledge it is desirable to use standard measures of imagery ability across language and cultures, thus motivating this project. The translation procedure followed guidelines from the Translation and Cultural Adaptation group of the International Society for Pharmacoeconomics and Outcomes Research and involved the following phases: Preparation; the original VMIQ-2 was adapted slightly to provide additional information and simplified grammar. Forward translation; three native speakers resident in Saudi Arabia translated the original VMIQ-2 from English to Arabic, following instruction to preserve meaning (not literal translation), and cultural relevance. Reconciliation; the project manager (first author), the primary translator and a physiotherapist reviewed the three independent translations to produce a reconciled first Arabic draft of VMIQ-2A. Backward translation; a fourth translator (native Arabic speaker fluent in English) translated literally the reconciled first Arabic draft to English. The project manager and two study authors compared the English back translation to the original VMIQ-2 and produced the second Arabic draft. Cognitive debriefing; to assess participants’ understanding of the second Arabic draft, 7 native Arabic speakers resident in the UK completed the questionnaire, and rated the clearness of the questions, specified difficult words or passages, and wrote in their own words their understanding of key terms. Following review of this feedback, a final Arabic version was created. 142 native Arabic speakers completed the questionnaire in community meeting places or at home; a subset of 44 participants completed the questionnaire a second time 1 week later. Results showed the translated questionnaire to be valid and reliable. Correlation coefficients indicated good test-retest reliability. Cronbach’s a indicated high internal consistency. Construct validity was tested in two ways. Imagery ability scores have been found to be invariant across gender; this result was replicated within the current study, assessed by independent-samples t-test. Additionally, experienced sports participants have higher imagery ability than those less experienced; this result was also replicated within the current study, assessed by analysis of variance, supporting construct validity. Results provide preliminary evidence that the VMIQ-2A is reliable and valid to be used with a general population who are native Arabic speakers. Future research will include validation of the VMIQ-2A in a larger sample, and testing validity in specific patient populations.

Keywords: motor imagery, physiotherapy, translation and validation, imagery ability

Procedia PDF Downloads 335
11 Multiple Primary Pulmonary Meningiomas: A Case Report

Authors: Wellemans Isabelle, Remmelink Myriam, Foucart Annick, Rusu Stefan, Compère Christophe

Abstract:

Primary pulmonary meningioma (PPM) is a very rare tumor, and its occurrence has been reported only sporadically. Multiple PPMs are even more exceptional, and herein, we report, to the best of our knowledge, the fourth case, focusing on the clinicopathological features of the tumor. Moreover, the possible relationship between the use of progesterone–only contraceptives and the development of these neoplasms will be discussed. Case Report: We report a case of a 51-year-old female presenting three solid pulmonary nodules, with the following localizations: right upper lobe, middle lobe, and left lower lobe, described as incidental findings on computed tomography (CT) during a pre-bariatric surgery check-up. The patient revealed no drinking or smoking history. The physical exam was unremarkable except for the obesity. The lesions ranged in size between 6 and 24 mm and presented as solid nodules with lobulated contours. The largest lesion situated in the middle lobe had mild fluorodeoxyglucose (FDG) uptake on F-18 FDG positron emission tomography (PET)/CT, highly suggestive of primary lung neoplasm. For pathological assessment, video-assisted thoracoscopic middle lobectomy and wedge resection of the right upper nodule was performed. Histological examination revealed relatively well-circumscribed solid proliferation of bland meningothelial cells growing in whorls and lobular nests, presenting intranuclear pseudo-inclusions and psammoma bodies. No signs of anaplasia were observed. The meningothelial cells expressed diffusely Vimentin, focally Progesterone receptors and were negative for epithelial (cytokeratin (CK) AE1/AE3, CK7, CK20, Epithelial Membrane Antigen (EMA)), neuroendocrine markers (Synaptophysin, Chromogranin, CD56) and Estrogenic receptors. The proliferation labelling index Ki-67 was low (<5%). Metastatic meningioma was ruled out by brain and spine magnetic resonance imaging (MRI) scans. The third lesion localized in the left lower lobe was followed-up and resected three years later because of its slow but significant growth (14 mm to 16 mm), alongside two new infra centimetric lesions. Those three lesions showed a morphological and immunohistochemical profile similar to previously resected lesions. The patient was disease-free one year post-last surgery. Discussion: Although PPMs are mostly benign and slow-growing tumors with an excellent prognosis, they do not present specific radiological characteristics, and it is difficult to differentiate it from other lung tumors, histopathologic examination being essential. Aggressive behavior is associated with atypical or anaplastic features (WHO grades II–III) The etiology is still uncertain and different mechanisms have been proposed. A causal connection between sexual hormones and meningothelial proliferation has long been suspected and few studies examining progesterone only contraception and meningioma risk have all suggested an association. In line with this, our patient was treated with Levonorgestrel, a progesterone agonist, intra-uterine device (IUD). Conclusions: PPM, defined by the typical histological and immunohistochemical features of meningioma in the lungs and the absence of central nervous system lesions, is an extremely rare neoplasm, mainly solitary and associating, and indolent growth. Because of the unspecific radiologic findings, it should always be considered in the differential diagnosis of lung neoplasms. Regarding multiple PPM, only three cases are reported in the literature, and this is the first described in a woman treated by a progesterone-only IUD to the best of our knowledge.

Keywords: pulmonary meningioma, multiple meningioma, meningioma, pulmonary nodules

Procedia PDF Downloads 114
10 Farm-Women in Technology Transfer to Foster the Capacity Building of Agriculture: A Forecast from a Draught-Prone Rural Setting in India

Authors: Pradipta Chandra, Titas Bhattacharjee, Bhaskar Bhowmick

Abstract:

The foundation of economy in India is primarily based on agriculture while this is the most neglected in the rural setting. More significantly, household women take part in agriculture with higher involvement. However, because of lower education of women they have limited access towards financial decisions, land ownership and technology but they have vital role towards the individual family level. There are limited studies on the institution-wise training barriers with the focus of gender disparity. The main purpose of this paper is to find out the factors of institution-wise training (non-formal education) barriers in technology transfer with the focus of participation of rural women in agriculture. For this study primary and secondary data were collected in the line of qualitative and quantitative approach. Qualitative data were collected by several field visits in the adjacent areas of Seva-Bharati, Seva Bharati Krishi Vigyan Kendra through semi-structured questionnaires. In the next level detailed field surveys were conducted with close-ended questionnaires scored on the seven-point Likert scale. Sample size was considered as 162. During the data collection the focus was to include women although some biasness from the end of respondents and interviewer might exist due to dissimilarity in observation, views etc. In addition to that the heterogeneity of sample is not very high although female participation is more than fifty percent. Data were analyzed using Exploratory Factor Analysis (EFA) technique with the outcome of three significant factors of training barriers in technology adoption by farmers: (a) Failure of technology transfer training (TTT) comprehension interprets that the technology takers, i.e., farmers can’t understand the technology either language barrier or way of demonstration exhibited by the experts/ trainers. (b) Failure of TTT customization, articulates that the training for individual farmer, gender crop or season-wise is not tailored. (c) Failure of TTT generalization conveys that absence of common training methods for individual trainers for specific crops is more prominent at the community level. The central finding is that the technology transfer training method can’t fulfill the need of the farmers under an economically challenged area. The impact of such study is very high in the area of dry lateritic and resource crunch area of Jangalmahal under Paschim Medinipur district, West Bengal and areas with similar socio-economy. Towards the policy level decision this research may help in framing digital agriculture for implementation of the appropriate information technology for the farming community, effective and timely investment by the government with the selection of beneficiary, formation of farmers club/ farm science club etc. The most important research implication of this study lies upon the contribution towards the knowledge diffusion mechanism of the agricultural sector in India. Farmers may overcome the barriers to achieve higher productivity through adoption of modern farm practices. Corporates will be interested in agro-sector through investment under corporate social responsibility (CSR). The research will help in framing public or industry policy and land use pattern. Consequently, a huge mass of rural farm-women will be empowered and farmer community will be benefitted.

Keywords: dry lateritic zone, institutional barriers, technology transfer in India, farm-women participation

Procedia PDF Downloads 375
9 Sinhala Sign Language to Grammatically Correct Sentences using NLP

Authors: Anjalika Fernando, Banuka Athuraliya

Abstract:

This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired community

Keywords: Sinhala sign language, sign Language, NLP, LSTM, NMT

Procedia PDF Downloads 107
8 Kuwait Environmental Remediation Program: Fresh Groudwater Risk Assessement from Tarcrete Material across the Raudhatain and Sabriyah Oil Fields, North Kuwait

Authors: Nada Al-Qallaf, Aisha Al-Barood, Djamel Lekmine, Srinivasan Vedhapuri

Abstract:

Kuwait Oil Company (KOC) under the supervision of Kuwait National Focal Point (KNFP) is planning to remediate 26 million (M) m3 of oil-contaminated soil in oil fields of Kuwait as a direct and indirect fallout of the Gulf War during 1990-1991. This project is funded by the United Nations Compensation Commission (UNCC) under the Kuwait Environmental Remediation Program (KERP). Oil-contamination of the soil occurred due to the destruction of the oil wells and spilled crude oil across the land surface and created ‘oil lakes’ in low lying land. Aerial fall-out from oil spray and combustion products from oil fires combined with the sand and gravel on the ground surface to form a layer of hardened ‘Tarcrete’. The unique fresh groundwater lenses present in the Raudhatain and Sabriya subsurface areas had been impacted by the discharge and/or spills of dissolved petroleum constituents. These fresh groundwater aquifers were used for drinking water purposes until 1990, prior to invasion. This has significantly damages altered the landscape, ecology and habitat of the flora and fauna and in Kuwait Desert. Under KERP, KOC is fully responsible for the planning and execution of the remediation and restoration projects in KOC oil fields. After the initial recommendation of UNCC to construct engineered landfills for containment and disposal of heavily contaminated soils, two landfills were constructed, one in North Kuwait and another in South East Kuwait of capacity 1.7 million m3 and 0.5 million m3 respectively. KOC further developed the Total Remediation Strategy in conjunction with KNFP and has obtained UNCC approval. The TRS comprises of elements such as Risk Based Approach (RBA), Bioremediation of low Contaminated Soil levels, Remediation Treatment Technologies, Sludge Disposal via Beneficial Recycling or Re-use and Engineered landfills for Containment of untreatable materials. Risk Based Assessment as a key component to avoid any unnecessary remedial works, where it can be demonstrated that human health and the environment are sufficiently protected in the absence of active remediation. This study demonstrates on the risks of tarcrete materials spread over areas 20 Km2 on the fresh Ground water lenses/catchment located beneath the Sabriyah and Raudhatain oil fields in North Kuwait. KOC’s primary objective is to provide justification of using RBA, to support a case with the Kuwait regulators to leave the tarcrete material in place, rather than seek to undertake large-scale removal and remediation. The large-scale coverage of the tarcrete in the oil fields and perception that the residual contamination associated with this source is present in an environmentally sensitive area essentially in ground water resource. As part of this assessment, conceptual site model (CSM) and complete risk-based and fate and transport modelling was carried out which includes derivation of site-specific assessment criteria (SSAC) and quantification of risk to identified waters resource receptors posed by tarcrete impacted areas. The outcome of this assessment was determined that the residual tarcrete deposits across the site area shall not create risks to fresh groundwater resources and the remedial action to remove and remediate the surficial tarcrete deposits is not warranted.

Keywords: conceptual site model, fresh groundwater, oil-contaminated soil, tarcrete, risk based assessment

Procedia PDF Downloads 175
7 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology

Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco

Abstract:

Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.

Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning

Procedia PDF Downloads 73
6 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit

Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi

Abstract:

Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).

Keywords: deep learning, delirium, healthcare, pervasive sensing

Procedia PDF Downloads 93
5 Identification Strategies for Unknown Victims from Mass Disasters and Unknown Perpetrators from Violent Crime or Terrorist Attacks

Authors: Michael Josef Schwerer

Abstract:

Background: The identification of unknown victims from mass disasters, violent crimes, or terrorist attacks is frequently facilitated through information from missing persons lists, portrait photos, old or recent pictures showing unique characteristics of a person such as scars or tattoos, or simply reference samples from blood relatives for DNA analysis. In contrast, the identification or at least the characterization of an unknown perpetrator from criminal or terrorist actions remains challenging, particularly in the absence of material or data for comparison, such as fingerprints, which had been previously stored in criminal records. In scenarios that result in high levels of destruction of the perpetrator’s corpse, for instance, blast or fire events, the chance for a positive identification using standard techniques is further impaired. Objectives: This study shows the forensic genetic procedures in the Legal Medicine Service of the German Air Force for the identification of unknown individuals, including such cases in which reference samples are not available. Scenarios requiring such efforts predominantly involve aircraft crash investigations, which are routinely carried out by the German Air Force Centre of Aerospace Medicine as one of the Institution’s essential missions. Further, casework by military police or military intelligence is supported based on administrative cooperation. In the talk, data from study projects, as well as examples from real casework, will be demonstrated and discussed with the audience. Methods: Forensic genetic identification in our laboratories involves the analysis of Short Tandem Repeats and Single Nucleotide Polymorphisms in nuclear DNA along with mitochondrial DNA haplotyping. Extended DNA analysis involves phenotypic markers for skin, hair, and eye color together with the investigation of a person’s biogeographic ancestry. Assessment of the biological age of an individual employs CpG-island methylation analysis using bisulfite-converted DNA. Forensic Investigative Genealogy assessment allows the detection of an unknown person’s blood relatives in reference databases. Technically, end-point-PCR, real-time PCR, capillary electrophoresis, pyrosequencing as well as next generation sequencing using flow-cell-based and chip-based systems are used. Results and Discussion: Optimization of DNA extraction from various sources, including difficult matrixes like formalin-fixed, paraffin-embedded tissues, degraded specimens from decomposed bodies or from decedents exposed to blast or fire events, provides soil for successful PCR amplification and subsequent genetic profiling. For cases with extremely low yields of extracted DNA, whole genome preamplification protocols are successfully used, particularly regarding genetic phenotyping. Improved primer design for CpG-methylation analysis, together with validated sampling strategies for the analyzed substrates from, e.g., lymphocyte-rich organs, allows successful biological age estimation even in bodies with highly degraded tissue material. Conclusions: Successful identification of unknown individuals or at least their phenotypic characterization using pigmentation markers together with age-informative methylation profiles, possibly supplemented by family tree search employing Forensic Investigative Genealogy, can be provided in specialized laboratories. However, standard laboratory procedures must be adapted to work with difficult and highly degraded sample materials.

Keywords: identification, forensic genetics, phenotypic markers, CPG methylation, biological age estimation, forensic investigative genealogy

Procedia PDF Downloads 51
4 Addressing Organizational Burnout in Higher Education: A Systemic Approach to Faculty Well-Being and Institutional Resilience

Authors: Liza L. S. Choi

Abstract:

Organizational burnout in higher education presents a critical challenge, undermining faculty well-being and institutional effectiveness. This study adopts a systemic perspective, addressing burnout through evidence-based strategies beyond individual coping mechanisms. Utilizing a meta-synthesis of existing literature, the author examines the underlying causes of burnout through the lenses of relational leadership, interpretivist theory, nudge theory, and the ADKAR model. The methodology synthesizes secondary data from peer-reviewed research, comprehensively analyzing key contributors to burnout, including excessive workloads, inadequate leadership, insufficient resources, and the absence of psychological safety. Key findings reveal that addressing burnout requires multi-faceted interventions. Effective implementation begins with leadership training programs grounded in relational leadership principles. These programs empower leaders to build trust by acknowledging and addressing faculty's unique challenges, such as workload inequities and insufficient support. For example, leaders can utilize interpretivist approaches to collect qualitative feedback through focus groups or anonymous surveys, providing actionable insights into the lived experiences of faculty. Institutions should establish policies encouraging open communication and normalizing feedback mechanisms to promote psychological safety. These initiatives include regular town halls, anonymous feedback portals, and structured team-building activities. They create environments where faculty feel supported and valued, reducing the stigma of voicing concerns. Drawing inspiration from successful practices in the healthcare sector, the author advocates for adopting an Associate Vice President (AVP) of Wellness role to lead organizational well-being initiatives. This role would centralize efforts to address faculty burnout and job satisfaction, ensuring alignment across departments and breaking down silos of operation. By fostering cross-departmental collaboration, this approach can lead to more integrated and efficient solutions, maximizing resource utilization and enhancing institutional resilience. The ADKAR model offers a structured framework for managing organizational change, emphasizing Awareness, Desire, Knowledge, Ability, and Reinforcement. Specific applications include facilitating workshops to raise awareness of burnout's impact, providing professional development programs that enhance faculty time management skills, and embedding well-being practices—such as flexible scheduling and equitable resource distribution—into institutional policies. Nudge theory further supports these efforts by employing subtle cues, such as reminders and default options, to encourage healthier work habits and foster collaboration. Finally, institutions should regularly evaluate the effectiveness of these interventions by implementing metrics such as faculty engagement scores, turnover rates, and utilization of wellness resources. By adopting a holistic and scalable framework that includes the AVP Wellness role and eliminates operational silos, this study provides academic institutions with practical tools to enhance morale, foster collaboration, and build resilience, ultimately addressing organizational burnout and creating a supportive educational environment.

Keywords: higher education, organizational burnout, relational leadership, culture of well-being and engagement

Procedia PDF Downloads 9
3 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 71
2 Beyond Bindis, Bhajis, Bangles, and Bhangra: Exploring Multiculturalism in Southwest England Primary Schools, Early Research Findings

Authors: Suparna Bagchi

Abstract:

Education as a discipline will probably be shaped by the importance it places on a conceptual, curricular, and pedagogical need to shift the emphasis toward transformative classrooms working for positive change through cultural diversity. Awareness of cultural diversity and race equality has heightened following George Floyd’s killing in the USA in 2020. This increasing awareness is particularly relevant in areas of historically low ethnic diversity which have lately experienced a rise in ethnic minority populations and where inclusive growth is a challenge. This research study aims to explore the perspectives of practitioners, students, and parents towards multiculturalism in four South West England primary schools. A qualitative case study methodology has been adopted framed by sociocultural theory. Data were collected through virtually conducted semi-structured interviews with school practitioners and parents, observation of students’ classroom activities, and documentary analysis of classroom displays. Although one-third of the school population includes ethnically diverse children, BAME (Black, Asian, and Minority Ethnic) characters featured in children's books published in Britain in 2019 were almost invisible, let alone a BAME main character. The Office for Standards in Education, Children's Services and Skills (Ofsted) are vocal about extending the Curriculum beyond the academic and technical arenas for pupils’ broader development and creation of an understanding and appreciation of cultural diversity. However, race equality and community cohesion which could help in the students’ broader development are not Ofsted’s school inspection criteria. The absence of culturally diverse content in the school curriculum highlighted by the 1985 Swann Report and 2007 Ajegbo Report makes England’s National Curriculum look like a Brexit policy three decades before Brexit. A revised National Curriculum may be the starting point with the teachers as curriculum framers playing a significant part. The task design is crucial where teachers can place equal importance on the interwoven elements of “how”, “what” and “why” the task is taught. Teachers need to build confidence in encouraging difficult conversations around racism, fear, indifference, and ignorance breaking the stereotypical barriers, thus helping to create students’ conception of a multicultural Britain. Research showed that trainee teachers in predominantly White areas often exhibit confined perspectives while educating children. Irrespective of the geographical location, school teachers can be equipped with culturally responsive initial and continuous professional development necessary to impart multicultural education. This may aid in the reduction of employees’ unconscious bias. This becomes distinctly pertinent to avoid horrific cases in the future like the recent one in Hackney where a Black teenager was strip-searched during period wrongly suspected of cannabis possession. Early research findings show participants’ eagerness for more ethnic diversity content incorporated in teaching and learning. However, schools are considerably dependent on the knowledge-focused Primary National Curriculum in England. Moreover, they handle issues around the intersectionality of disability, poverty, and gender. Teachers were trained in times when foregrounding ethnicity matters was not happening. Therefore, preoccupied with Curriculum requirements, intersectionality issues, and teacher preparations, schools exhibit an incapacity due to which keeping momentum on ethnic diversity is somewhat endangered.

Keywords: case study, curriculum decolonisation, inclusive education, multiculturalism, qualitative research in Covid19 times

Procedia PDF Downloads 120
1 Supply Side Readiness for Universal Health Coverage: Assessing the Availability and Depth of Essential Health Package in Rural, Remote and Conflict Prone District

Authors: Veenapani Rajeev Verma

Abstract:

Context: Assessing facility readiness is paramount as it can indicate capacity of facilities to provide essential care for resilience to health challenges. In the context of decentralization, estimation of supply side readiness indices at sub national level is imperative for effective evidence based policy but remains a colossal challenge due to lack of dependable and representative data sources. Setting: District Poonch of Jammu and Kashmir was selected for this study. It is remote, rural district with unprecedented topographical barriers and is identified as high priority by government. It is also a fragile area as is bounded by Line of Control with Pakistan bearing the brunt of cease fire violations, military skirmishes and sporadic militant attacks. Hilly geographical terrain, rudimentary/absence of road network and impoverishment are quintessential to this area. Objectives: Objective of the study is to a) Evaluate the service readiness of health facilities and create a concise index subsuming plethora of discrete indicators and b) Ascertain supply side barriers in service provisioning via stakeholder’s analysis. Study also strives to expand analytical domain unravelling context and area specific intricacies associated with service delivery. Methodology: Mixed method approach was employed to triangulate quantitative analysis with qualitative nuances. Facility survey encompassing 90 Subcentres, 44 Primary health centres, 3 Community health centres and 1 District hospital was conducted to gauge general service availability and service specific availability (depth of coverage). Compendium of checklist was designed using Indian Public Health Standards (IPHS) in form of standard core questionnaire and scorecard generated for each facility. Information was collected across dimensions of amenities, equipment, medicines, laboratory and infection control protocols as proposed in WHO’s Service Availability and Readiness Assesment (SARA). Two stage polychoric principal component analysis employed to generate a parsimonious index by coalescing an array of tracer indicators. OLS regression method used to determine factors explaining composite index generated from PCA. Stakeholder analysis was conducted to discern qualitative information. Myriad of techniques like observations, key informant interviews and focus group discussions using semi structured questionnaires on both leaders and laggards were administered for critical stakeholder’s analysis. Results: General readiness score of health facilities was found to be 0.48. Results indicated poorest readiness for subcentres and PHC’s (first point of contact) with composite score of 0.47 and 0.41 respectively. For primary care facilities; principal component was characterized by basic newborn care as well as preparedness for delivery. Results revealed availability of equipment and surgical preparedness having lowest score (0.46 and 0.47) for facilities providing secondary care. Presence of contractual staff, more than 1 hr walk to facility, facilities in zone A (most vulnerable) to cross border shelling and facilities inaccessible due to snowfall and thick jungles was negatively associated with readiness index. Nonchalant staff attitude, unavailability of staff quarters, leakages and constraint in supply chain of drugs and consumables were other impediments identified. Conclusions/Policy Implications: It is pertinent to first strengthen primary care facilities in this setting. Complex dimensions such as geographic barriers, user and provider behavior is not under precinct of this methodology.

Keywords: effective coverage, principal component analysis, readiness index, universal health coverage

Procedia PDF Downloads 122