Search results for: Ehsan Almasi
6 Efficacy of Mitomycin C in Reducing Recurrence of Anterior Urethral Stricture after Internal Optical Urethrotomy
Authors: Liaqat Ali, Ehsan, Muhammad Shahzad, Nasir Orakzai
Abstract:
Introduction: Internal optical urethrotomy is the main stay treatment modality in management of urethral stricture. Being minimal invasive with less morbidity, it is commonly performed and favored procedure by urologists across the globe. Although short-term success rate of optical urethrotomy is promising but long-term efficacy of IOU is questionable with high recurrence rate in different studies. Numerous techniques had been adopted to reduce the recurrence after IOU like prolong catheterization and self-clean intermittent catheterization with varying success. Mitomycin C has anti-fibroblast and anti-collagen properties and has been used in trabeculectomy, myringotomy and after keloid scar excision in contemporary surgical practice. Present study according to the best of our knowledge is a pioneer pilot study in Pakistan to determine the efficacy of Mitomycin C in preventing recurrence of urethral stricture after internal optical urethrotomy. Objective: To determine the efficacy of Mitomycin C in reducing the recurrence of anterior urethral stricture after internal optical urethrotomy. Methods: It is a randomized control trial conducted in department of urology, Institute of Kidney Diseases Hayatabad Medical Complex Peshawar from March 2011 till December 2013. After approval of hospital ethical committee, we included maximum of 2 cm anterior urethral stricture irrespective of etiology. Total of 140 patients were equally divided into two groups by lottery method. Group A (Case) comprising of 70 patients in whom Mitomycin C 0.1% was injected sub mucosal in stricture area at 1,11,6 and 12 O clock position using straight working channel paediatric cystoscope after conventional optical urethrotomy. Group B (Control) 70 patients in whom only optical urethrotomy was performed. SCIC was not offered in both the groups. All the patients were regularly followed on a monthly basis for 3 months then three monthly for remaining 9 months. Recurrence was diagnosed by using diagnostic tools of retrograde urethrogram and flexible urethroscopy in selected cased. Data was collected on structured Proforma and was analyzed on SPSS. Result: The mean age in Group A was 33 ±1.5 years and Group B was 35 years. External trauma was leading cause of urethral stricture in both groups 46 (65%) Group A and 50 (71.4%) Group B. In Group A. Iatrogenic urethral trauma was 2nd etiological factor in both groups. 18(25%) Group A while 15( 21.4%) in Group B. At the end of 1 year, At the end of one year, recurrence of urethral stricture was recorded in 11 (15.71%) patient in Mitomycin C Group A and it was recorded in 27 (38.5 %) patients in group B. Significant difference p=0.001 was found in favour of group A Mitomycin group. Conclusion: Recurrence of urethral stricture is high after optical urethrotomy. Mitomycin C is found highly effective in preventing recurrence of urethral stricture after IOU.Keywords: urethral stricture, mitomycine, internal optical urethrotomy, medical and health sciences
Procedia PDF Downloads 3815 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators
Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy
Abstract:
Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators
Procedia PDF Downloads 1134 Humanitarian Storytelling through Photographs with and for Resettled Refugees in Wellington
Authors: Ehsan K. Hazaveh
Abstract:
This research project explores creative methods of storytelling through photography to portray a vulnerable and marginalised community: former refugees living in Wellington, New Zealand. The project explores photographic representational techniques that can not only empower and give voice to those communities but also challenge dominant stereotypes about refugees and support humanitarian actions. The aims of this study are to develop insights surrounding issues associated with the photographic representation of refugees and to explore the collaborative construction of possible counter-narratives that might lead to the formulation of a practice framework for representing refugees using photography. In other words, the goal of this study is to explore representational and narrative strategies that frame refugees as active community members and as individuals with specific histories and expertise. These counter-narratives will bring the diversity of refugees to the surface by offering personal stories, contextualising their experience, raising awareness about the plight and human rights of the refugee community in New Zealand, evoking empathy and, therefore, facilitating the process of social change. The study has designed a photographic narrative framework by determining effective methods of photo storytelling, framing, and aesthetic techniques, focusing on different ways of taking, selecting, editing and curating photographs. Photo elicitation interviews have been used to ‘explore’, ‘produce’ and ‘co-curate’ the counter-narrative along with participants. Photo elicitation is a qualitative research method that employs images to evoke data in order to find out how other people experience their world - the researcher shows photographs to the participant and asks open-ended questions to get them to talk about their life experiences and the world around them. The qualitative data have been collected and produced through interactions with four former refugees living in Wellington, New Zealand. In this way, this project offers a unique account of their conditions and basic knowledge about their living experience and their stories. The participants of this study have engaged with PhotoVoice, a photo elicitation methodology that employs photography and storytelling, to share activities, emotions, hopes, and aspects of their lived experiences. PhotoVoice was designed to empower members of marginalised populations. It involves a series of meeting sessions, in which participants share photographs they have taken and discuss stories about the photographs to identify, represent, and enhance the issues important to their lives and communities. Finally, the data provide a basis for systematically producing visual counter-narratives that highlight the experiences of former- refugees. By employing these methods, refugees can represent their world as well as interpret it. The process of developing this research framing has enabled the development of powerful counter-narratives that challenge prevailing stereotypical depictions which in turn have the potential to shape improved humanitarian outcomes, shifts in public attitudes and political perspectives in New Zealand.Keywords: media, photography, refugees, photo-elicitation, storytelling
Procedia PDF Downloads 1493 Influence of Ride Control Systems on the Motions Response and Passenger Comfort of High-Speed Catamarans in Irregular Waves
Authors: Ehsan Javanmardemamgheisi, Javad Mehr, Jason Ali-Lavroff, Damien Holloway, Michael Davis
Abstract:
During the last decades, a growing interest in faster and more efficient waterborne transportation has led to the development of high-speed vessels for both commercial and military applications. To satisfy this global demand, a wide variety of arrangements of high-speed crafts have been proposed by designers. Among them, high-speed catamarans have proven themselves to be a suitable Roll-on/Roll-off configuration for carrying passengers and cargo due to widely spaced demi hulls, a wide deck zone, and a high ratio of deadweight to displacement. To improve passenger comfort and crew workability and enhance the operability and performance of high-speed catamarans, mitigating the severity of motions and structural loads using Ride Control Systems (RCS) is essential.In this paper, a set of towing tank tests was conducted on a 2.5 m scaled model of a 112 m Incat Tasmania high-speed catamaran in irregular head seas to investigate the effect of different ride control algorithms including linear and nonlinear versions of the heave control, pitch control, and local control on motion responses and passenger comfort of the full-scale ship. The RCS included a centre bow-fitted T-Foil and two transom-mounted stern tabs. All the experiments were conducted at the Australian Maritime College (AMC) towing tank at a model speed of 2.89 m/s (37 knots full scale), a modal period of 1.5 sec (10 sec full scale) and two significant wave heights of 60 mm and 90 mm, representing full-scale wave heights of 2.7 m and 4 m, respectively. Spectral analyses were performed using Welch’s power spectral density method on the vertical motion time records of the catamaran model to calculate heave and pitch Response Amplitude Operators (RAOs). Then, noting that passenger discomfort arises from vertical accelerations and that the vertical accelerations vary at different longitudinal locations within the passenger cabin due to the variations in amplitude and relative phase of the pitch and heave motions, the vertical accelerations were calculated at three longitudinal locations (LCG, T-Foil, and stern tabs). Finally, frequency-weighted Root Mean Square (RMS) vertical accelerations were calculated to estimate Motion Sickness Dose Value (MSDV) of the ship based on ISO 2631-recommendations. It was demonstrated that in small seas, implementing a nonlinear pitch control algorithm reduces the peak pitch motions by 41%, the vertical accelerations at the forward location by 46%, and motion sickness at the forward position by around 20% which provides great potential for further improvement in passenger comfort, crew workability, and operability of high-speed catamarans.Keywords: high-speed catamarans, ride control system, response amplitude operators, vertical accelerations, motion sickness, irregular waves, towing tank tests.
Procedia PDF Downloads 822 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines
Authors: Kamyar Tolouei, Ehsan Moosavi
Abstract:
In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization
Procedia PDF Downloads 1051 Quality Assessment of Pedestrian Streets in Iran: Case Study of Saf, Tehran
Authors: Fstemeh Rais Esmaili, Ehsan Ranjbar
Abstract:
Pedestrian streets as one type of urban public spaces have an important role in improving the quality of urban life. In Iran, planning and designing of pedestrian streets is in its primary steps. In spite of starting this approach in Iran, and designing several pedestrian streets, there are still not organized studies about quality assessment of pedestrian streets. As a result, the strength and weakness points of the initial experiences have not been utilized. This inattention to quality assessment have caused designing pedestrian streets to be limited to just vehicles traffic control and preliminary actions like paving; so that, special potentials of pedestrian streets for creating social, livable and dynamic public spaces have not been used. This article, as an organized study about quality assessment of pedestrian streets in Iran, tries to reach two main goals: first, introducing a framework for quality assessment of pedestrian streets in Iran, and second, creating a context for improving the quality of pedestrian streets especially for further experiences. The main research methods are description and context analyzing. With respect to comparative analysis of ideas about quality, considering international and local case studies and analyzing existing condition of Saf Pedestrian Street, a particular model for quality assessment has been introduced. In this model, main components and assessment criteria have been presented. On the basis of this model, questionnaire and checklist for assessment have been prepared. The questionnaire and interview have been used to assess qualities which are in direct contact with people and the checklist has been used for analyzing visual qualities by authors through observation. Some results of questionnaire and checklist show that 7 of 11 primary components, diversity, flexibility, cleanness, legibility and imaginably, identity, livability, form and physical setting are rated low and very low in quality degree. Three components, efficiency, comfort and distinctiveness, have medium and low quality degree and one component, access, linkage and permeability has high quality degree. Therefore, based on implemented analyzing process, Saf Pedestrian Street needs to be improved and these quality improvement priorities are determined based on presented criteria. Adaption of final results with existing condition illustrates the shortage of services for satisfying user’s needs, inflexibility and impossibility of using spaces in various times, lack of facilities for different climatic conditions, lack of facilities such as drinking fountain, inappropriate designing of existing urban furniture like garbage cans, and creating pollution and unsuitable view, lack of visual attractions, neglecting disabled persons in designing entrances, shortage of benches and their undesirable designing, lack of vegetation, absence of special characters making it different from other streets, preventing people taking part in the space causing lack of affiliation, lack of appropriate elements for leisure time and lack of exhilaration in the space. On the other hand, these results present high access and permeability, high safety, less sound pollution and more relief, comfortable movement along the way due to suitable pavement and economic efficiency, as the strength points of Saf pedestrian street.Keywords: pedestrian streets, quality assessment, quality criteria, Saf Pedestrian Street
Procedia PDF Downloads 255