Search results for: Jingjing Chen
7 Lab-on-Chip Multiplexed qPCR Analysis Utilizing Melting Curve Analysis Detects Up to 144 Alleles with Sub-hour Turn-around Time
Authors: Jeremy Woods, Fanqing Chen
Abstract:
Rapid genome testing can provide results in at best hours to days, though there are certain clinical decisions that could be guided by genetic test results that need results in hours to minutes. As such, methods of genetic Point of Care Testing (POCT) are required if genetic data is to guide management in illnesses in a wide variety of critical and emergent medical situations such as neonatal sepsis, chemotherapy administration in endometrial cancer, and glucose-6-phosphate dehydrogenase deficiency (G6PD)-associated neonatal hyperbilirubinemia. As such, we developed a POCT “lab-on-chip” technology capable of identifying up to 144 alleles in under an hour. This test required no specialized training to utilize and is suitable to deployment in clinics and hospitals for use by non-laboratory personnel such as nurses. We developed a multiplexed qPCR-based sample-to-answer system with melting curve analysis capable of detecting up to 144 alleles utilizing the Kelliop RapidSeq126 PCR platform combined with a single-use microfluidic cartridge. The RapidSeq126 is the size of a standard desktop printer and the microfluidic cartridges are smaller than a deck of playing cards. Thus the system was deployable in the outpatient setting for clinical trials of MT-RNR1 genotyping. The sample (buccal swab from volunteers or plasmids in media) used for DNA extraction was placed in the cartridge sample inlet prior to inserting the cartridge into the RapidSeq126. The microfluidic cartridge was composed of heat resistant polymer with a sample inlet, 100um conduits, liquid and solid reagents, valves, extraction chamber, lyophilization chamber, 12 PCR reaction chambers, and a waste chamber. No human effort was required for processing the sample and performing the assay other than placing the sample in the cartridge and placing the cartridge in the RapidSeq126. The RapidSeq126 has demonstrated ex vivo detection in plasmids and in vivo detection from human volunteer samples of up to 144 alleles per microfluidic cartridge used and did not require specialized laboratory training to operate. Efficacy was proven for several applications, such as multiple microsatellite instability (MSI) sites (SULF/RYR3/MRE11/ACVR2A/DIDO1/SEC31A/BTBD7), endometrial cancer POLE exonuclease domain (EMD) mutation status, and G6PD variants such as those commonly associated with hemolysis (c.202G>A, c.376A>G, c.680G>A>T, c.968T>C, 404A>C, c.871G>A). The RapidSeq126 system was also able to identify the three MT-RNR1 variants associated with aminoglycoside-induced sensorineural hearing loss (m.1555A>G, m.1095T>C, m.1494C>T). Results were provided in under an hour in a sample-to-answer fashion requiring no processing other than inserting the cartridge with the sample into the RapidSeq126. Results were provided in a digital, HL7-compliant format suitable for interfacing with Electronic Healthcare Record (EHR). The RapidSeq126 system provides a solution for emergency and critical medical situations requiring results in a matter of minutes to hours. The HL7-compliant data format of results enables the RapidSeq126 to interface directly with EHRs to generate best practice advisories and further reduce errors and time to diagnosis by providing digital results.Keywords: genetic testing, pharmacogenomics, point of care testing, rapid genetic testing
Procedia PDF Downloads 96 Promoting Environmental Sustainability in Rural Areas with CMUH Green Experiential Education Center
Authors: Yi-Chu Liu, Hsiu-Huei Hung, Li-Hui Yang, Ming-Jyh Chen
Abstract:
introduction: To promote environmental sustainability, the hospital formed a corporate volunteer team in 2016 to build the Green Experiential Education Center. Our green creation center utilizes attic space to achieve sustainability objectives such as energy efficiency and carbon reduction. Other than executing sustainable plans, the center emphasizes experiential education. We invite our community to actively participate in building a sustainable, economically viable environment. Since 2020, the China Medical University Hospital has provided medical care to the Tgbin community in Taichung City's Heping District. The tribe, primarily composed of Atayal people, the elderly comprise 18% of the total population, and these families' per capita income is relatively low compared to Taiwanese citizens elsewhere. Purpose / Methods: With the experiences at the Green Experiential Education Center, CMUH team identifies the following objectives: Create an aquaponic system to supply vulnerable local households with food. Create a solar renewable energy system to meet the electricity needs of vulnerable local households. Promote the purchase of green electricity certificates to reduce the hospital's carbon emissions and generate additional revenue for the local community. Materials and Methods: In March 2020, we visited the community and installed The aquaponic system in January 2021. CMUH spent 150,000NT (approximately 5000US dollars) in March 2021 to build a 100-square-meter aquaponic system. The production of vegetables and fish caught determines the number of vulnerable families that can be supported. The aquaponics system is a kind of Low energy consumption and environmentally friendly production method, and can simultaneously achieve energy saving, water saving, and fertilizer saving .In September 2023, CMUH will complete a solar renewable energy system. The system will cover an area of 308 square meters and costs approximately NT$240,000 (approximately US$8,000). The installation of electricity meters will enable statistical analysis of power generation. And complete the Taiwan National Renewable Energy Certificate application process. The green electricity certificate will be obtained based on the monthly power generation from the solar renewable energy system. Results: I Food availability and access are crucial considering the remote location and aging population. By creating a fish and vegetable symbiosis system, the vegetables and catches produced will enable economically disadvantaged families to lower food costs. In 2021 and 2022, the aquaponic system produced 52 kilograms of vegetables and 75 kilograms of catch. The production ensures the daily needs of 8 disadvantaged families. Conclusions: The hospital serves as a fortress for public health and the ideal setting for corporate social responsibility. China Medical University Hospital and the Green Experiential Education Center work to strengthen ties with rural communities and offer top-notch specialty medical care. We are committed to assisting people in escaping poverty and hunger as part of the 2030 Sustainable Development Goals.Keywords: environmental education, sustainability, energy conservation, carbon emissions, rural area development
Procedia PDF Downloads 835 Applying Concept Mapping to Explore Temperature Abuse Factors in the Processes of Cold Chain Logistics Centers
Authors: Marco F. Benaglia, Mei H. Chen, Kune M. Tsai, Chia H. Hung
Abstract:
As societal and family structures, consumer dietary habits, and awareness about food safety and quality continue to evolve in most developed countries, the demand for refrigerated and frozen foods has been growing, and the issues related to their preservation have gained increasing attention. A well-established cold chain logistics system is essential to avoid any temperature abuse; therefore, assessing potential disruptions in the operational processes of cold chain logistics centers becomes pivotal. This study preliminarily employs HACCP to find disruption factors in cold chain logistics centers that may cause temperature abuse. Then, concept mapping is applied: selected experts engage in brainstorming sessions to identify any further factors. The panel consists of ten experts, including four from logistics and home delivery, two from retail distribution, one from the food industry, two from low-temperature logistics centers, and one from the freight industry. Disruptions include equipment-related aspects, human factors, management aspects, and process-related considerations. The areas of observation encompass freezer rooms, refrigerated storage areas, loading docks, sorting areas, and vehicle parking zones. The experts also categorize the disruption factors based on perceived similarities and build a similarity matrix. Each factor is evaluated for its impact, frequency, and investment importance. Next, multiple scale analysis, cluster analysis, and other methods are used to analyze these factors. Simultaneously, key disruption factors are identified based on their impact and frequency, and, subsequently, the factors that companies prioritize and are willing to invest in are determined by assessing investors’ risk aversion behavior. Finally, Cumulative Prospect Theory (CPT) is applied to verify the risk patterns. 66 disruption factors are found and categorized into six clusters: (1) "Inappropriate Use and Maintenance of Hardware and Software Facilities", (2) "Inadequate Management and Operational Negligence", (3) "Product Characteristics Affecting Quality and Inappropriate Packaging", (4) "Poor Control of Operation Timing and Missing Distribution Processing", (5) "Inadequate Planning for Peak Periods and Poor Process Planning", and (6) "Insufficient Cold Chain Awareness and Inadequate Training of Personnel". This study also identifies five critical factors in the operational processes of cold chain logistics centers: "Lack of Personnel’s Awareness Regarding Cold Chain Quality", "Personnel Not Following Standard Operating Procedures", "Personnel’s Operational Negligence", "Management’s Inadequacy", and "Lack of Personnel’s Knowledge About Cold Chain". The findings show that cold chain operators prioritize prevention and improvement efforts in the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster, particularly focusing on the factors of "Temperature Setting Errors" and "Management’s Inadequacy". However, through the application of CPT theory, this study reveals that companies are not usually willing to invest in the improvement of factors related to the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster due to its low occurrence likelihood, but they acknowledge the severity of the consequences if it does occur. Hence, the main implication is that the key disruption factors in cold chain logistics centers’ processes are associated with personnel issues; therefore, comprehensive training, periodic audits, and the establishment of reasonable incentives and penalties for both new employees and managers may significantly reduce disruption issues.Keywords: concept mapping, cold chain, HACCP, cumulative prospect theory
Procedia PDF Downloads 704 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent
Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar
Abstract:
Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.Keywords: artificial intelligence, trustworthiness, voice, adolescent
Procedia PDF Downloads 633 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 2512 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 1301 A Study on the Use Intention of Smart Phone
Authors: Zhi-Zhong Chen, Jun-Hao Lu, Jr., Shih-Ying Chueh
Abstract:
Based on Unified Theory of Acceptance and Use of Technology (UTAUT), the study investigates people’s intention on using smart phones. The study additionally incorporates two new variables: 'self-efficacy' and 'attitude toward using'. Samples are collected by questionnaire survey, in which 240 are valid. After Correlation Analysis, Reliability Test, ANOVA, t-test and Multiple Regression Analysis, the study finds that social impact and self-efficacy have positive effect on use intentions, and the use intentions also have positive effect on use behavior.Keywords: [1] Ajzen & Fishbein (1975), “Belief, attitude, intention and behavior: An introduction to theory and research”, Reading MA: Addison-Wesley. [2] Bandura (1977) Self-efficacy: toward a unifying theory of behavioural change. Psychological Review , 84, 191–215. [3] Bandura( 1986) A. Bandura, Social foundations of though and action, Prentice-Hall. Englewood Cliffs. [4] Ching-Hui Huang (2005). The effect of Regular Exercise on Elderly Optimism: The Self-efficacy and Theory of Reasoned Action Perspectives.(Master's dissertation, National Taiwan Sport University, 2005).National Digital Library of Theses and Dissertations in Taiwan。 [5] Chun-Mo Wu (2007).The Effects of Perceived Risk and Service Quality on Purchase Intention - an Example of Taipei City Long-Term Care Facilities. (Master's dissertation, Ming Chuan University, 2007).National Digital Library of Theses and Dissertations in Taiwan. [6] Compeau, D.R., and Higgins, C.A., (1995) “Application of social cognitive theory to training for computer skills.”, Information Systems Research, 6(2), pp.118-143. [7] computer-self-efficacy and mediators of the efficacy-performance relationship. International Journal of Human-Computer Studies, 62, 737-758. [8] Davis et al(1989), “User acceptance of computer technology: A comparison of two theoretical models ”, Management Science, 35(8), p.982-1003. [9] Davis et al(1989), “User acceptance of computer technology:A comparison of two theoretical models ”, Management Science, 35(8), p.982-1003. [10] Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340。 [11] Davis. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. doi:10.2307/249008 [12] Johnson, R. D. (2005). An empirical investigation of sources of application-specific [13] Mei-yin Hsu (2010).The Study on Attitude and Satisfaction of Electronic Documents System for Administrators of Elementary Schools in Changhua County.(Master's dissertation , Feng Chia University, 2010).National Digital Library of Theses and Dissertations in Taiwan. [14] Ming-Chun Hsieh (2010). Research on Parents’ Attitudes Toward Electronic Toys: The case of Taichung City.(Master's dissertation, Chaoyang University of Technology,2010).National Digital Library of Theses and Dissertations in Taiwan. [15] Moon and Kim(2001). Extending the TAM for a World-Wide-Web context, Information and Management, v.38 n.4, p.217-230. [16] Shang-Yi Hu (2010).The Impacts of Knowledge Management on Customer Relationship Management – Enterprise Characteristicsand Corporate Governance as a Moderator.(Master's dissertation, Leader University, 2010)。National Digital Library of Theses and Dissertations in Taiwan. [17] Sheng-Yi Hung (2013, September10).Worldwide sale of smartphones to hit one billion IDC:Android dominate the market. ETtoday. Retrieved data form the available protocol:2013/10/3. [18] Thompson, R.L., Higgins, C.A., and Howell, J.M.(1991), “Personal Computing: Toward a Conceptual Model of Utilization”, MIS Quarterly(15:1), pp. 125-143. [19] Venkatesh, V., M.G. Morris, G.B. Davis, and F. D. Davis (2003), “User acceptance of information technology: Toward a unified view, ” MIS Quarterly, 27, No. 3, pp.425-478. [20] Vijayasarathy, L. R. (2004), Predicting Consumer Intentions to Use On-Line Shopping: The Case for an Augmented Technology Acceptance Model, Information and Management, Vol.41, No.6, pp.747-762. [21] Wikipedia - smartphone (http://zh.wikipedia.org/zh-tw/%E6%99%BA%E8%83%BD%E6%89%8B%E6%9C%BA)。 [22] Wu-Minsan (2008).The impacts of self-efficacy, social support on work adjustment with hearing impaired. (Master's dissertation, Southern Taiwan University of Science and Technology, 2008).National Digital Library of Theses and Dissertations in Taiwan. [23] Yu-min Lin (2006). The Influence of Business Employee’s MSN Self-efficacy On Instant Messaging Usage Behavior and Communicaiton Satisfaction.(Master's dissertation, National Taiwan University of Science and Technology, 2006).National Digital Library of Theses and Dissertations in Taiwan.
Procedia PDF Downloads 411