Search results for: residents' well-being
8 Renewable Energy Utilization for Future Sustainability: An Approach to Roof-Mounted Photovoltaic Array Systems and Domestic Rooftop Rainwater Harvesting System Implementation in a Himachal Pradesh, India
Authors: Rajkumar Ghosh, Ananya Mukhopadhyay
Abstract:
This scientific paper presents a thorough investigation into the integration of roof-mounted photovoltaic (PV) array systems and home rooftop rainwater collection systems in a remote community in Himachal Pradesh, India, with the goal of optimum utilization of natural resources for attaining sustainable living conditions by 2030. The study looks into the technical feasibility, environmental benefits, and socioeconomic impacts of this integrated method, emphasizing its ability to handle energy and water concerns in remote rural regions. This comprehensive method not only provides a sustainable source of electricity but also ensures a steady supply of clean water, promoting resilience and improving the quality of life for the village's residents. This research highlights the potential of such integrated systems in supporting sustainable conditions in rural areas through a combination of technical feasibility studies, economic analysis, and community interaction. There would be 20690 villages and 1.48 million homes (23.79% annual growth rate) in Himachal Pradesh if all residential buildings in the state had roof-mounted photovoltaic arrays to capture solar energy for power generation. The energy produced is utilized to power homes, lessening dependency on traditional fossil fuels. The same residential buildings housed domestic rooftop rainwater collection systems. Rainwater runoff from rooftops is collected and stored in tanks for use in a number of residential purposes, such as drinking, cooking, and irrigation. The gathered rainfall enhances the region's limited groundwater resources, easing the strain on local wells and aquifers. Although Himachal Pradesh of India is a Power state, the PV arrays have reduced the reliance of village on grid power and diesel generators by providing a steady source of electricity. Rooftop rainwater gathering has not only increased residential water supply but it has also lessened the burden on local groundwater resources. This helps to replenish groundwater and offers a more sustainable water supply for the town. The neighbourhood has saved money by utilizing renewable energy and rainwater gathering. Furthermore, lower fossil fuel consumption reduces greenhouse gas emissions, which helps to mitigate the effects of climate change. The integrated strategy of installing grid connected rooftop photovoltaic arrays and home rooftop rainwater collecting systems in Himachal Pradesh rural community demonstrates a feasible model for sustainable development. According to “Swaran Jayanti Energy Policy of Himachal Pradesh”, Himachal Pradesh is planned 10 GW from rooftop mode from Solar Power. Government of India provides 40% subsidy on solar panel of 1-3 kw and subsidy of Rs 6,000 per kw per year to encourage domestic consumers of Himachal Pradesh. This effort solves energy and water concerns, improves economic well-being, and helps to conserve the environment. Such integrated systems can serve as a model for sustainable development in rural areas not only in Himachal Pradesh, but also in other parts of the world where resource scarcity is a major concern. Long-term performance and scalability of such integrated systems should be the focus of future study. Efforts should also be made to duplicate this approach in other rural areas and examine its socioeconomic and environmental implications over time.Keywords: renewable energy, photovoltaic arrays, rainwater harvesting, sustainability, rural development, Himachal Pradesh, India
Procedia PDF Downloads 1007 Saving Lives from a Laptop: How to Produce a Live Virtual Media Briefing That Will Inform, Educate, and Protect Communities in Crisis
Authors: Cory B. Portner, Julie A. Grauert, Lisa M. Stromme, Shelby D. Anderson, Franji H. Mayes
Abstract:
Introduction: WASHINGTON state in the Pacific Northwest of the United States is internationally known for its technology industry, fisheries, agriculture, and vistas. On January 21, 2020, Washington state also became known as the first state with a confirmed COVID-19 case in the United States, thrusting the state into the international spotlight as the world came to grips with the global threat of this disease presented. Tourism is Washington state’s fourth-largest industry. Tourism to the state generates over 1.8 billion dollars (USD) in local and state tax revenue and employs over 180,000 people. Communicating with residents, stakeholders, and visitors on the status of disease activity, prevention measures, and response updates was vital to stopping the pandemic and increasing compliance and awareness. Significance: In order to communicate vital public health updates, guidance implementation, and safety measures to the public, the Washington State Department of Health established routine live virtual media briefings to reach audiences via social media, internet television, and broadcast television. Through close partnership with regional broadcast news stations and the state public affairs news network, the Washington State Department of Health hosted 95 media briefings from January 2020 through September 2022 and continues to regularly host live virtual media briefings to accommodate the needs of the public and media. Methods: Our methods quickly evolved from hosting briefings in the cement closet of a military base to being able to produce and stream the briefings live from any home-office location. The content was tailored to the hot topic of the day and to the reporter's questions and needs. Virtual media briefings hosted through inexpensive or free platforms online are extremely cost-effective: the only mandatory components are WiFi, a laptop, and a monitor. There is no longer a need for a fancy studio or expensive production software to achieve the goal of communicating credible, reliable information promptly. With minimal investment and a small learning curve, facilitators and panelists are able to host highly produced and engaging media availabilities from their living rooms. Results: The briefings quickly developed a reputation as the best source for local and national journalists to get the latest and most factually accurate information about the pandemic. In the height of the COVID-19 response, 135 unique media outlets logged on to participate in the briefing. The briefings typically featured 4-5 panelists, with as many as 9 experts in attendance to provide information and respond to media questions. Preparation was always a priority: Public Affairs staff for the Washington State Department of Health produced over 170 presenter remarks, including guidance on talking points for 63 expert guest panelists. Implication For Practice: Information is today’s most valuable currency. The ability to disseminate correct information urgently and on a wide scale is the most effective tool in crisis communication. Due to our role as the first state with a confirmed COVID-19 case, we were forced to develop the most accurate and effective way to get life-saving information to the public. The cost-effective, web-based methods we developed can be applied in any crisis to educate and protect communities under threat, ultimately saving lives from a laptop.Keywords: crisis communications, public relations, media management, news media
Procedia PDF Downloads 1846 Stakeholder Engagement to Address Urban Health Systems Gaps for Migrants
Authors: A. Chandra, M. Arthur, L. Mize, A. Pomeroy-Stevens
Abstract:
Background: Lower and middle-income countries (LMICs) in Asia face rapid urbanization resulting in both economic opportunities (the urban advantage) and emerging health challenges. Urban health risks are magnified in informal settlements and include infectious disease outbreaks, inadequate access to health services, and poor air quality. Over the coming years, urban spaces in Asia will face accelerating public health risks related to migration, climate change, and environmental health. These challenges are complex and require multi-sectoral and multi-stakeholder solutions. The Building Health Cities (BHC) program is funded by the United States Agency for International Development (USAID) to work with smart city initiatives in the Asia region. BHC approaches urban health challenges by addressing policies, planning, and services through a health equity lens, with a particular focus on informal settlements and migrant communities. The program works to develop data-driven decision-making, build inclusivity through stakeholder engagement, and facilitate the uptake of appropriate technology. Methodology: The BHC program has partnered with the smart city initiatives of Indore in India, Makassar in Indonesia, and Da Nang in Vietnam. Implementing partners support municipalities to improve health delivery and equity using two key approaches: political economy analysis and participatory systems mapping. Political economy analyses evaluate barriers to collective action, including corruption, security, accountability, and incentives. Systems mapping evaluates community health challenges using a cross-sectoral approach, analyzing the impact of economic, environmental, transport, security, health system, and built environment factors. The mapping exercise draws on the experience and expertise of a diverse cohort of stakeholders, including government officials, municipal service providers, and civil society organizations. Results: Systems mapping and political economy analyses identified significant barriers for health care in migrant populations. In Makassar, migrants are unable to obtain the necessary card that entitles them to subsidized health services. This finding is being used to engage with municipal governments to mitigate the barriers that limit migrant enrollment in the public social health insurance scheme. In Indore, the project identified poor drainage of storm and wastewater in migrant settlements as a cause of poor health. Unsafe and inadequate infrastructure placed residents of these settlements at risk for both waterborne diseases and injuries. The program also evaluated the capacity of urban primary health centers serving migrant communities, identifying challenges related to their hours of service and shortages of health workers. In Da Nang, the systems mapping process has only recently begun, with the formal partnership launched in December 2019. Conclusion: This paper explores lessons learned from BHC’s systems mapping, political economy analyses, and stakeholder engagement approaches. The paper shares progress related to the health of migrants in informal settlements. Case studies feature barriers identified and mitigating steps, including governance actions, taken by local stakeholders in partner cities. The paper includes an update on ongoing progress from Indore and Makassar and experience from the first six months of program implementation from Da Nang.Keywords: informal settlements, migration, stakeholder engagement mapping, urban health
Procedia PDF Downloads 1195 Adaptable Path to Net Zero Carbon: Feasibility Study of Grid-Connected Rooftop Solar PV Systems with Rooftop Rainwater Harvesting to Decrease Urban Flooding in India
Authors: Rajkumar Ghosh, Ananya Mukhopadhyay
Abstract:
India has seen enormous urbanization in recent years, resulting in increased energy consumption and water demand in its metropolitan regions. Adoption of grid-connected solar rooftop systems and rainwater collection has gained significant popularity in urban areas to address these challenges while also boosting sustainability and environmental consciousness. Grid-connected solar rooftop systems offer a long-term solution to India's growing energy needs. Solar panels are erected on the rooftops of residential and commercial buildings to generate power by utilizing the abundant solar energy available across the country. Solar rooftop systems generate clean, renewable electricity, reducing reliance on fossil fuels and lowering greenhouse gas emissions. This is compatible with India's goal of reducing its carbon footprint. Urban residents and companies can save money on electricity by generating their own and possibly selling excess power back to the grid through net metering arrangements. India gives several financial incentives (subsidies 40% for system capacity 1 kW to 3 kW) to stimulate the building of solar rooftop systems, making them an economically viable option for city dwellers. India provides subsidies up to 70% to special states such as Uttarakhand, Sikkim, Himachal Pradesh, Jammu & Kashmir, and Lakshadweep. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating pressure on traditional energy sources and improving air quality. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating demand on existing energy sources and improving power supply reliability. Rainwater harvesting is another key component of India's sustainable urban development. It comprises collecting and storing rainwater for use in non-potable water applications such as irrigation, toilet flushing, and groundwater recharge. Rainwater gathering 2 helps to conserve water resources by lowering the demand for freshwater sources. This technology is crucial in water-stressed areas to ensure a sustainable water supply. Excessive rainwater runoff in metropolitan areas can lead to Urban flooding. Solar PV system with Rooftop Rainwater harvesting systems absorb and channel excess rainwater, which helps to reduce flooding and waterlogging in Smart cities. Rainwater harvesting systems are inexpensive and quick to set up, making them a tempting option for city dwellers and businesses looking to save money on water. Rainwater harvesting systems are now compulsory in several Indian states for specified types of buildings (bye law, Rooftop space ≥ 300 sq. m.), ensuring widespread adoption. Finally, grid-connected solar rooftop systems and rainwater collection are important to India's long-term urban development. They not only reduce the environmental impact of urbanization, but also empower individuals and businesses to control their energy and water requirements. The G20 summit will focus on green financing, fossil fuel phaseout, and renewable energy transition. The G20 Summit in New Delhi reaffirmed India's commitment to battle climate change by doubling renewable energy capacity. To address climate change and mitigate global warming, India intends to attain 280 GW of solar renewable energy by 2030 and Net Zero carbon emissions by 2070. With continued government support and increased awareness, these strategies will help India develop a more resilient and sustainable urban future.Keywords: grid-connected solar PV system, rooftop rainwater harvesting, urban flood, groundwater, urban flooding, net zero carbon emission
Procedia PDF Downloads 914 Observations on Cultural Alternative and Environmental Conservation: Populations "Delayed" and Excluded from Health and Public Hygiene Policies in Mexico (1890-1930)
Authors: Marcela Davalos Lopez
Abstract:
The history of the circulation of hygienic knowledge and the consolidation of public health in Latin American cities towards the end of the 19th century is well known. Among them, Mexico City was inserted in international politics, strengthened institutions, medical knowledge, applied parameters of modernity and built sanitary engineering works. Despite the power that this hygienist system achieved, its scope was relative: it cannot be generalized to all cities. From a comparative and contextual analysis, it will be shown that conclusions derived from modern urban historiography present, from our contemporary observations, fractures. Between 1890 and 1930, the small cities and areas surrounding the Mexican capital adapted in their own way the international and federal public health regulations. This will be shown for neighborhoods located around Mexico City and in a medium city, close to the Mexican capital (about 80 km), called Cuernavaca. While the inhabitants of the neighborhoods kept awaiting the evolutionary process and the forms that public hygiene policies were taking (because they were witnesses and affected in their territories), in Cuernavaca, the dictates came as an echo. While the capital was drained, large roads were opened, roundabouts were erected, residents were expelled, and drains, sewers, drinking water pipes, etc., were built; Cuernavaca was sheltered in other times and practices. What was this due to? Undoubtedly, the time and energy that it took politicians and the group of "scientists" to carry out these enormous works in the Mexican capital took them away from addressing the issue in remote villages. It was not until the 20th century that the federal hygiene policy began to be strengthened. Despite this, there are other factors that emphasize the particularities of each site. I would like to draw attention here to the different receptions that each town prepared on public hygiene. We will see that Cuernavaca responded to its own semi-rural culture, history, orography and functions, prolonging for much longer, for example, the use of its deep ravines as sewers. For their part, the neighborhoods surrounding the capital, although affected and excluded from hygienist policies, chose to move away from them and solve the deficiencies with their own resources (they resorted to the waste that was left from the dried lake of Mexico to continue their lake practices). All of this points to a paradox that shapes our contemporary concerns: on the one hand, the benefits derived from medical knowledge and its technological applications (in this work referring particularly to the urban health system) and, on the other, the alteration it caused in environmental settings. Places like Cuernavaca (classified by the nineteenth-century and hygienists of the first decades of the twentieth century as backward), as well as landscapes such as neighborhoods, affected by advances in sanitary engineering, keep in their memory buried practices that we observe today as possible ways to reestablish environmental balances: alternative uses of water; recycling of organic materials; local uses of fauna; various systems for breaking down excreta, and so on. In sum, what the nineteenth and first half of the twentieth centuries graduated as levels of backwardness or progress, turn out to be key information to rethink the routes of environmental conservation. When we return to the observations of the scientists, politicians and lawyers of that period, we find historically rejected cultural alterity. Populations such as Cuernavaca that, due to their history, orography and/or insufficiency of federal policies, kept different relationships with the environment, today give us clues to reorient basic elements of cities: alternative uses of water, waste of raw materials, organic or consumption of local products, among others. It is, therefore, a matter of unearthing the rejected that cries out to emerge to the surface.Keywords: sanitary hygiene, Mexico city, cultural alterity, environmental conservation, environmental history
Procedia PDF Downloads 1643 Developing a Place-Name Gazetteer for Singapore by Mining Historical Planning Archives and Selective Crowd-Sourcing
Authors: Kevin F. Hsu, Alvin Chua, Sarah X. Lin
Abstract:
As a multilingual society, Singaporean names for different parts of the city have changed over time. Residents included Indigenous Malays, dialect-speakers from China, European settler-colonists, and Tamil-speakers from South India. Each group would name locations in their own languages. Today, as ancestral tongues are increasingly supplanted by English, contemporary Singaporeans’ understanding of once-common place names is disappearing. After demolition or redevelopment, some urban places will only exist in archival records or in human memory. United Nations conferences on the standardization of geographic names have called attention to how place names relate to identity, well-being, and a sense of belonging. The Singapore Place-Naming Project responds to these imperatives by capturing past and present place names through digitizing historical maps, mining archival records, and applying selective crowd-sourcing to trace the evolution of place names throughout the city. The project ensures that both formal and vernacular geographical names remain accessible to historians, city planners, and the public. The project is compiling a gazetteer, a geospatial archive of placenames, with streets, buildings, landmarks, and other points of interest (POI) appearing in the historic maps and planning documents of Singapore, currently held by the National Archives of Singapore, the National Library Board, university departments, and the Urban Redevelopment Authority. To create a spatial layer of information, the project links each place name to either a geo-referenced point, line segment, or polygon, along with the original source material in which the name appears. This record is supplemented by crowd-sourced contributions from civil service officers and heritage specialists, drawing from their collective memory to (1) define geospatial boundaries of historic places that appear in past documents, but maybe unfamiliar to users today, and (2) identify and record vernacular place names not captured in formal planning documents. An intuitive interface allows participants to demarcate feature classes, vernacular phrasings, time periods, and other knowledge related to historical or forgotten spaces. Participants are stratified into age bands and ethnicity to improve representativeness. Future iterations could allow additional public contributions. Names reveal meanings that communities assign to each place. While existing historical maps of Singapore allow users to toggle between present-day and historical raster files, this project goes a step further by adding layers of social understanding and planning documents. Tracking place names illuminates linguistic, cultural, commercial, and demographic shifts in Singapore, in the context of transformations of the urban environment. The project also demonstrates how a moderated, selectively crowd-sourced effort can solicit useful geospatial data at scale, sourced from different generations, and at higher granularity than traditional surveys, while mitigating negative impacts of unmoderated crowd-sourcing. Stakeholder agencies believe the project will achieve several objectives, including Supporting heritage conservation and public education; Safeguarding intangible cultural heritage; Providing historical context for street, place or development-renaming requests; Enhancing place-making with deeper historical knowledge; Facilitating emergency and social services by tagging legal addresses to vernacular place names; Encouraging public engagement with heritage by eliciting multi-stakeholder input.Keywords: collective memory, crowd-sourced, digital heritage, geospatial, geographical names, linguistic heritage, place-naming, Singapore, Southeast Asia
Procedia PDF Downloads 1292 Remote Building: An Integrated Approach to Domestic Rainwater Harvesting System Implementation in a Rural Village in Himachal Pradesh, India
Authors: Medha Iyer, Anshul Paul, Aunnesha Bhowmick, Anahita Banerjee, Sana Prasad, Anoushka Singal, Lauren Sinopoli, Pooja Bapat, Shivi Jain
Abstract:
In Himachal Pradesh, India, a majority of the population lives in rural villages spread throughout its hilly regions; many of these households rely on subsistence farming as their main source of livelihood. The student-run non-profit organization affiliated with this study, Project RISHI (Rural India Social and Health Improvement), works to promote sustainable development practices in Bharog Baneri, a gram panchayat, or union, of villages in Himachal Pradesh. In 2017, an established rainwater harvesting (RWH) project group within Project RISHI had surveyed many families, finding that the most common issue regarding food and water access was a lack of accessible water sources for agricultural use in the dry season. After a prototype build in 2018, the group built 6 systems for eligible residents that demonstrated need in 2019. Subsequently, the project went through an evaluation period, including self-evaluation of project goals and post-impact surveying of system recipients. The group used the social impact assessment model to optimize the implementation of domestic RWH systems in Bharog Baneri. Assessing implementation after in-person builds produced three pillars of focus — system design, equitable recipient selection, and community involvement. After two years of remote involvement during COVID-19, the group prepared to visit Bharog Baneri to build 10 new systems in the Summer 2022. First, the group created a more durable and cost-effective design that could withstand debris and heavy rains to prevent gutter failure. The domestic system design is a rooftop RWH catchment system with two tanks attached, an overflow pipe, debris filtration, and a spigot for accessibility. The group also developed a needs-based eligibility methodology with assistance from village leaders and surveying in Bharog Baneri and set up the groundwork for a future community board. COVID-19 has strengthened remote work, telecommunications, and other organizational support systems. As sustainable development evolves to encompass these practices in a post-pandemic world, the potential for new RWH system design and implementation processes has emerged as well. This raises the question: how can a social impact assessment of rural RWH projects inform an integrated approach to post-pandemic RWH system practices? The objective of this exploratory study is to investigate and evaluate a novel remote build infrastructure that brings access to reliable and sustainable sources of water for agricultural use. To construct the remote build approach, the group identified and assigned a point of contact who was experienced with previous RWH system builds. The recipients were selected based on demonstrated need and ease of building. The contact visited each of the houses and coordinated supplier relations and transportation of the materials in accordance with the participatory approach to sustainable development. Over the course of two months, the group completed four system builds with the resulting infrastructure. The infrastructure adhered to the social impact assessment model by centering supplier relations, material transportation, and construction logistics within the community. The conclusion of this exploration is that post-pandemic rural RWH practices should be rooted in strengthening villager communication and utilizing local assets. Through this, non-profit organizations can incorporate remote build strategies into their long-term goals.Keywords: capturing run-off from rooftops, domestic rainwater harvesting, Implementation approaches and strategies, rainwater harvesting and management in rural sectors
Procedia PDF Downloads 871 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 127