Search results for: dual inhibitors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1207

Search results for: dual inhibitors

7 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 189
6 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform

Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis

Abstract:

For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.

Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring

Procedia PDF Downloads 138
5 Glycyrrhizic Acid Inhibits Lipopolysaccharide-Stimulated Bovine Fibroblast-Like Synoviocyte, Invasion through Suppression of TLR4/NF-κB-Mediated Matrix Metalloproteinase-9 Expression

Authors: Hosein Maghsoudi

Abstract:

Rheumatois arthritis (RA) is progressive inflammatory autoimmune diseases that primarily affect the joints, characterized by synovial hyperplasia and inflammatory cell infiltration, deformed and painful joints, which can lead tissue destruction, functional disability systemic complications, and early dead and socioeconomic costs. The cause of rheumatoid arthritis is unknown, but genetic and environmental factors are contributory and the prognosis is guarded. However, advances in understanding the pathogenesis of the disease have fostered the development of new therapeutics, with improved outcomes. The current treatment strategy, which reflects this progress, is to initiate aggressive therapy soon after diagnosis and to escalate the therapy, guided by an assessment of disease activity, in pursuit of clinical remission. The pathobiology of RA is multifaceted and involves T cells, B cells, fibroblast-like synoviocyte (FLSc) and the complex interaction of many pro-inflammatory cytokine. Novel biologic agents that target tumor necrosis or interlukin (IL)-1 and Il-6, in addition T- and B-cells inhibitors, have resulted in favorable clinical outcomes in patients with RA. Despite this, at least 30% of RA patients are résistance to available therapies, suggesting novel mediators should be identified that can target other disease-specific pathway or cell lineage. Among the inflammatory cell population that might participated in RA pathogenesis, FLSc are crucial in initiaing and driving RA in concert of cartilage and bone by secreting metalloproteinase (MMPs) into the synovial fluid and by direct invasion into extracellular matrix (ECM), further exacerbating joint damage. Invasion of fibroblast-like synoviocytes (FLSc) is critical in the pathogenesis of rheumatoid-arthritis. The metalloproteinase (MMPs) and activator of Toll-like receptor 4 (TLR4)/nuclear factor- κB pthway play a critical role in RA-FLS invasion induced by lipopolysaccharide (LPS). The present study aimed to explore the anti-invasion activity of Glycyrrhizic Acid as a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in Bovine fibroblast-like synoviocyte ex- vitro, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Results showed that Glycyrrhizic Acid suppressed LPS-stimulated bovine FLS migration and invasion by inhibition MMP-9 expression and activity. In addition our results revealed that Glycyrrhizic Acid inhibited the transcriptional activity of MMP-9 by suppression the nbinding activity of NF- κB in the MMP-9 promoter pathway. The extract of licorice (Glycyrrhiza glabra L.) has been widely used for many centuries in the traditional Chinese medicine as native anti-allergic agent. Glycyrrhizin (GL), a triterpenoidsaponin, extracted from the roots of licorice is the most effective compound for inflammation and allergic diseases in human body. The biological and pharmacological studies revealed that GL possesses many pharmacological effects, such as anti-inflammatory, anti-viral and liver protective effects, and the biological effects, such as induction of cytokines (interferon-γ and IL-12), chemokines as well as extrathymic T and anti-type 2 T cells. GL is known in the traditional Chinese medicine for its anti-inflammatory effect, which is originally described by Finney in 1959. The mechanism of the GL-induced anti-inflammatory effect is based on different pathways of the GL-induced selective inhibition of the prostaglandin E2 production, the CK-II- mediated activation of both GL-binding lipoxygenas (gbLOX; 17) and PLA2, an anti-thrombin action of GL and production of the reactive oxygen species (ROS; GL exerts liver protection properties by inhibiting PLA2 or by the hydroxyl radical trapping action, leading to the lowering of serum alanine and aspartate transaminase levels. The present study was undertaken to examine the possible mechanism of anti-inflammatory properties GL on IL-1beta and TNF-alpha signalling pathways in bovine fibroblast-like synoviocyte ex-vivo, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Our results clearly showed that treatment of bovine fibroblast-like synoviocyte with GL suppressed LPS-induced cell migration and invasion. Furthermore, it revealed that GL inhibited the transcription activity of MMP-9 by suppressing the binding activity of NF-κB in the MM-9 promoter. MMP-9 is an important ECM-degrading enzyme and overexpression of MMPs in important of RA-FLSs. LPS can stimulate bovine FLS to secret MMPs, and this induction is regulated at the transcription and translational levels. In this study, LPS treatment of bovine FLS caused an increase in MMP-2 and MMP-9 levels. The increase in MMP-9 expression and secretion was inhibited by ex- vitro. Furthermore, these effects were mimicked by MMP-9 siRNA. These result therefore indicate the the inhibition of LPS-induced bovine FLS invasion by GL occurs primarily by inhibiting MMP-9 expression and activity. Next we analyzed the functional significance of NF-κB transcription of MMP-9 activation in Bovine FLSs. Results from EMSA showed that GL suppressed LPS-induced NF-κB binding to the MMP-9 promotor, as NF-κB regulates transcriptional activation of multiple inflammatory cytokines, we predicted that GL might target NF-κB to suppress MMP-9 transcription by LPS. Myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-κB and apoptotic signaling pathways, GL inhibited the expression of TLR4 and MYD88. These results demonstrated that GL suppress LPS-induced MMP-9 expression through the inhibition of the induced TLR4/NFκB signaling pathway. Taken together, our results provide evidence that GL exerts anti-inflammatory effects by inhibition LPS-induced bovine FLSs migration and invasion, and the mechanisms may involve the suppression of TLR4/NFκB –mediated MMP-9 expression. Although further work is needed to clarify the complicated mechanism of GL-induced anti-invasion of bovine FLSs, GL might be used as a further anti-invasion drug with therapeutic efficacy in the treatment of immune-mediated inflammatory disease such as RA.

Keywords: glycyrrhizic acid, bovine fibroblast-like synoviocyte, tlr4/nf-κb, metalloproteinase-9

Procedia PDF Downloads 390
4 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island

Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari

Abstract:

Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.

Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area

Procedia PDF Downloads 404
3 Microdiamond and Moissanite Inclusions in Garnets from Pohorje Mountains, Eastern Alps, Slovenia

Authors: Mirijam Vrabec, Marian Janak, Bojan Ambrozic, Angelja K. Surca, Nastja Rogan Smuc, Nina Zupancic, Saso Sturm

Abstract:

Natural microdiamonds and moissanite (SiC) can form during the orogenic events under ultrahigh-pressure metamorphic conditions (UHP), when parts of Earth’s crust are subducted to extreme depths. So far, such processes were identified only in few places on the Earth, and therefore, represent unique opportunity to study the evolution of the Earth’s deep interior. An important discovery of microdiamonds and moissanite was reported from Pohorje, (Slovenia), where they occurred as single or polyphase inclusions in garnets. Metasedimentary rocks from Pohorje are predominantly gneisses representing parts of the Austroalpine metamorphic units of the Eastern Alps. During Cretaceous orogeny, (ca. 95–92 Ma) continental crustal rocks were deeply subducted to the mantle depths (below 100 km) and metamorphosed at pressures exceeding 3.5 GPa and temperatures between 800–850 °C. Microstructural and phase analysis of the inclusions as well as detailed elemental analysis of host garnets were carried out combining several analytical techniques: optical microscope in plane polarized transmitted light, electron probe microanalysis (EPMA) with wavelength-dispersive x-ray spectrometry (WDS) and field-emission scanning microscope (FEG-SEM) with energy-dispersive x-ray spectroscopy (EDS). Micro-Raman analysis revealed sharp, first order diamond bands sometimes accompanied by graphite bands implying that transformation of diamond back to graphite occurred. To study the chemical and crystallographic relationship between microdiamonds and co-inclusions, advanced techniques of transmission electron microscopy (TEM) were applied, which included high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), combined with EDS and electron energy-loss spectroscopy (EELS). To prepare electron transparent TEM lamellae selectively a dual-beam Focused Ion Beam/SEM (FIB/SEM) was employed. Detailed study of TEM lamellae, which was cross-sectioned from the highly faceted inclusion body located within the host garnet crystal matrix, revealed rich and rather complex internal structure. Namely, the negative crystal facets of the main inclusion body were typically decorated with up to 1 μm thick amorphous layer, reflecting the general garnet composition with slight variations in Fe/Ca content. Within these layers, ELNES analysis revealed the presence of a 28–30 nm thick layer of amorphous carbon. The very last section of this layer corresponds to composition of SiO2. Within the inclusion, besides diamond and moissanite alumosilicate mineral with pronounced layered structure, iron sulfides and chlorine were identified under TEM and CO2 and CH4 using Raman. Moissanite is found as single crystal or composed from numerous highly textured nano-crystals with the average size of 10 nm. Moissanite inclusions were found embedded inside the amorphous crust implying that moissanite crystalized well before the deposition of the amorphous layer. From the microstructural, crystallographic and chemical observations so far we can deduce, that polyphase inclusions in diamond bearing garnets from Pohorje most probably crystallized from reduced supercritical fluids. Based on layered interface structure of the host mineral multiphase process of crystallization is possible. The presence of microdiamonds and moissanite in rocks from Pohorje demonstrates that these parts of the Eastern Alps were subducted to extreme depths, and were subsequently exhumed back to the Earth's surface without complete breakdown of UHP mineral phases, allowing a rear and exceptional opportunity to study them in-situ.

Keywords: diamond, fluid inclusions, moissanite, TEM, UHP metamorphism.

Procedia PDF Downloads 302
2 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 4
1 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water

Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya

Abstract:

Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.

Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination

Procedia PDF Downloads 27