Search results for: convolutional neural net
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1056

Search results for: convolutional neural net

6 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 192
5 Clinico-pathological Study of Xeroderma Pigmentosa: A Case Series of Eight Cases

Authors: Kakali Roy, Sahana P. Raju, Subhra Dhar, Sandipan Dhar

Abstract:

Introduction: Xeroderma pigmentosa (XP) is a rare inherited (autosomal recessive) disease resulting from impairment in DNA repair that involves recognition and repair of ultraviolet radiation (UVR) induced DNA damage in the nucleotide excision repair pathway. Which results in increased photosensitivity, UVR induced damage to skin and eye, increased susceptibility of skin and ocular cancer, and progressive neurodegeneration in some patients. XP is present worldwide, with higher incidence in areas having frequent consanguinity. Being extremely rare, there is limited literature on XP and associated complications. Here, the clinico-pathological experience (spectrum of clinical presentation, histopathological findings of malignant skin lesions, and progression) of managing 8 cases of XP is presented. Methodology: A retrospective study was conducted in a pediatric tertiary care hospital in eastern India during a ten-year period from 2013 to 2022. A clinical diagnosis was made based on severe sun burn or premature photo-aging and/or onset of cutaneous malignancies at early age (1st decade) in background of consanguinity and autosomal recessive inheritance pattern in family. Results: The mean age of presentation was 1.2 years (range of 7month-3years), while three children presented during their infancy. Male to female ratio was 5:3, and all were born of consanguineous marriage. They presented with dermatological manifestations (100%) followed by ophthalmic (75%) and/or neurological symptoms (25%). Patients had normal skin at birth but soon developed extreme sensitivity to UVR in the form of exaggerated sun tanning, burning, and blistering on minimal sun exposure, followed by abnormal skin pigmentation like freckles and lentiginosis. Subsequently, over time there was progressive xerosis, atrophy, wrinkling, and poikiloderma. Six patients had varied degree of ocular involvement, while three of them had severe manifestation, including madarosis, tylosis, ectropion, Lagopthalmos, Pthysis bulbi, clouding and scarring of the cornea with complete or partial loss of vision, and ophthalmic malignancies. 50% (n=4) cases had skin and ocular pre-malignant (actinic keratosis) and malignant lesions, including melanoma and non melanoma skin cancer (NMSC) like squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) in their early childhood. One patient had simultaneous occurrence of multiple malignancies together (SCC, BCC, and melanoma). Subnormal intelligence was noticed as neurological feature, and none had sensory neural hearing loss, microcephaly, neuroregression, or neurdeficit. All the patients had been being managed by a multidisciplinary team of pediatricians, dermatologists, ophthalmologists, neurologists and psychiatrists. Conclusion: Although till date there is no complete cure for XP and the disease is ultimately fatal. But increased awareness, early diagnosis followed by persistent vigorous protection from UVR, and regular screening for early detection of malignancies along with psychological support can drastically improve patients’ quality of life and life expectancy. Further research is required on formulating optimal management of XP, specifically the role and possibilities of gene therapy in XP.

Keywords: childhood malignancies, dermato-pathological findings, eastern India, Xeroderma pigmentosa

Procedia PDF Downloads 76
4 FELIX: 40 Hz Masked Flickering Light as a Potential Treatment of Major Depressive Disorder

Authors: Nikolas Aasheim, Laura Sakalauskaitė, Julie Dubois, Malina Ploug Larsen, Paul Michael Petersen, Marcus S. Carstensen, Marcus S. Carstensen, Mai Nguyen, Line Katrine Harder Clemmensen, Kamilla Miskowiak, Klaus Martiny

Abstract:

Background: Major depressive disorder (MDD) is a debilitating condition that affects more than 300 million people worldwide and profoundly impacts well-being and health. Current treatments are based on a trial-and-error approach, and reliable biomarkers are needed for more informed and personalized treatment solutions. One potential biomarker is aberrant gamma-frequency (30-80 Hz) brainwaves, hypothesized to originate from deficiencies in the excitatory-inhibitory interaction between the pyramidal cells and interneurons. An imbalance within this interaction is described as a crucial pathological mechanism in various neuropsychiatric conditions, including MDD, and the modulation of this pathological interaction has been investigated as a potential target. A specific type of steady-state visually evoked potential (SSVEP) in the gamma frequency band, referred to as gamma entrainment using sensory stimuli (GENUS), particularly around the 40Hz spectrum, entrains large scale, fast-spiking PV+ interneurons, facilitating coordinated activity in key brain regions, reduced neuronal and synaptic loss, and enhanced synaptic stability and plasticity. GENUS has shown promise in improving sleep, offering neuroprotective effects in Alzheimer's disease (AD), and reducing pathological markers like Amyloid Beta and TAU proteins, as seen in animal models. In this study, we explore the antidepressant, cognitive, and electrophysiological effects of a novel, non-invasive brain stimulation (NIBS) approach utilizing a 40 Hz invisible spectral flicker to induce gamma activity in patients diagnosed with Major Depressive Disorder (MDD). This non-invasive targeted stimulation of lower gamma band activity (40 Hz) is designed to modulate neural circuits associated with mood and cognitive functions, providing a potential new therapeutic avenue for MDD. Methods and Design: 60 patients with a current diagnosis of a major depressive episode will be enrolled in a randomized, double-blinded, placebo-controlled trial. The active treatment group will receive 40 Hz invisible spectral flickering light stimulation while the control group will receive continuous light matched in colour temperature and brightness. Patients in both groups will get an hour of daily light treatment in their own homes and will attend four follow-up visits to assess depression severity measured by Hamilton Depression Rating Scale (HAM-D₆), several aspects of sleep, cognitive function, quality of life. Additionally, exploratory EEG is conducted to assess spectral changes throughout the protocol. The primary endpoint is the mean change from baseline to week 6 in depression severity (HAM-D₆ subset) between the groups. Current state of affairs/timeline: The FELIX study was initiated in the beginning of 2022, planning to reach stage of publication in December 2025. 21 participants have been enrolled in the protocol thus far, expecting to be finished with trials and recruitment by the end of 2024.

Keywords: major depressive disorder, gamma, neurostimulation, EEG

Procedia PDF Downloads 15
3 Organic Tuber Production Fosters Food Security and Soil Health: A Decade of Evidence from India

Authors: G. Suja, J. Sreekumar, A. N. Jyothi, V. S. Santhosh Mithra

Abstract:

Worldwide concerns regarding food safety, environmental degradation and threats to human health have generated interest in alternative systems like organic farming. Tropical tuber crops, cassava, sweet potato, yams, and aroids are food-cum-nutritional security-cum climate resilient crops. These form stable or subsidiary food for about 500 million global population. Cassava, yams (white yam, greater yam, and lesser yam) and edible aroids (elephant foot yam, taro, and tannia) are high energy tuberous vegetables with good taste and nutritive value. Seven on-station field experiments at ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India and seventeen on-farm trials in three districts of Kerala, were conducted over a decade (2004-2015) to compare the varietal response, yield, quality and soil properties under organic vs conventional system in these crops and to develop a learning system based on the data generated. The industrial, as well as domestic varieties of cassava, the elite and local varieties of elephant foot yam and taro and the three species of Dioscorea (yams), were on a par under both systems. Organic management promoted yield by 8%, 20%, 9%, 11% and 7% over conventional practice in cassava, elephant foot yam, white yam, greater yam and lesser yam respectively. Elephant foot yam was the most responsive to organic management followed by yams and cassava. In taro, slight yield reduction (5%) was noticed under organic farming with almost similar tuber quality. The tuber quality was improved with higher dry matter, starch, crude protein, K, Ca and Mg contents. The anti-nutritional factors, oxalate content in elephant foot yam and cyanogenic glucoside content in cassava were lowered by 21 and 12.4% respectively. Organic plots had significantly higher water holding capacity, pH, available K, Fe, Mn and Cu, higher soil organic matter, available N, P, exchangeable Ca and Mg, dehydrogenase enzyme activity and microbial count. Organic farming scored significantly higher soil quality index (1.93) than conventional practice (1.46). The soil quality index was driven by water holding capacity, pH and available Zn followed by soil organic matter. Organic management enhanced net profit by 20-40% over chemical farming. A case in point is the cost-benefit analysis in elephant foot yam which indicated that the net profit was 28% higher and additional income of Rs. 47,716 ha-1 was obtained due to organic farming. Cost-effective technologies were field validated. The on-station technologies developed were validated and popularized through on-farm trials in 10 sites (5 ha) under National Horticulture Mission funded programme in elephant foot yam and seven sites in yams and taro. The technologies are included in the Package of Practices Recommendations for crops of Kerala Agricultural University. A learning system developed using artificial neural networks (ANN) predicted the performance of elephant foot yam organic system. Use of organically produced seed materials, seed treatment in cow-dung, neem cake, bio-inoculant slurry, farmyard manure incubated with bio-inoculants, green manuring, use of neem cake, bio-fertilizers and ash formed the strategies for organic production. Organic farming is an eco-friendly management strategy that enables 10-20% higher yield, quality tubers and maintenance of soil health in tuber crops.

Keywords: eco-agriculture, quality, root crops, healthy soil, yield

Procedia PDF Downloads 338
2 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management

Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li

Abstract:

Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.

Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification

Procedia PDF Downloads 251
1 Mapping the Neurotoxic Effects of Sub-Toxic Manganese Exposure: Behavioral Outcomes, Imaging Biomarkers, and Dopaminergic System Alterations

Authors: Katie M. Clark, Adriana A. Tienda, Krista C. Paffenroth, Lindsey N. Brigante, Daniel C. Colvin, Jose Maldonado, Erin S. Calipari, Fiona E. Harrison

Abstract:

Manganese (Mn) is an essential trace element required for human health and is important in antioxidant defenses, as well as in the development and function of dopaminergic neurons. However, chronic low-level Mn exposure, such as through contaminated drinking water, poses risks that may contribute to neurodevelopmental and neurodegenerative conditions, including attention deficit hyperactivity disorder (ADHD). Pharmacological inhibition of the dopamine transporter (DAT) blocks reuptake, elevates synaptic dopamine, and alleviates ADHD symptoms. This study aimed to determine whether Mn exposure in juvenile mice modifies their response to DAT blockers, amphetamine, and methylphenidate and utilize neuroimaging methods to visualize and quantify Mn distribution across dopaminergic brain regions. Male and female heterozygous DATᵀ³⁵⁶ᴹ and wild-type littermates were randomly assigned to receive control (2.5% Stevia) or high Manganese (2.5 mg/ml Mn + 2.5% Stevia) via water ad libitum from weaning (21-28 days) for 4-5 weeks. Mice underwent repeated testing in locomotor activity chambers for three consecutive days (60 mins.) to ensure that they were fully habituated to the environments. On the fourth day, a 3-hour activity session was conducted following treatment with amphetamine (3 mg/kg) or methylphenidate (5 mg/kg). The second drug was administered in a second 3-hour activity session following a 1-week washout period. Following the washout, the mice were given one last injection of amphetamine and euthanized one hour later. Using the ex-vivo brains, magnetic resonance relaxometry (MRR) was performed on a 7Telsa imaging system to map T1- and T2-weighted (T1W, T2W) relaxation times. Mn inherent paramagnetic properties shorten both T1W and T2W times, which enhances the signal intensity and contrast, enabling effective visualization of Mn accumulation in the entire brain. A subset of mice was treated with amphetamine 1 hour before euthanasia. SmartSPIM light sheet microscopy with cleared whole brains and cFos and tyrosine hydroxylase (TH) labeling enabled an unbiased automated counting and densitometric analysis of TH and cFos positive cells. Immunohistochemistry was conducted to measure synaptic protein markers and quantify changes in neurotransmitter regulation. Mn exposure elevated Mn brain levels and potentiated stimulant effects in males. The globus pallidus, substantia nigra, thalamus, and striatum exhibited more pronounced T1W shortening, indicating regional susceptibility to Mn accumulation (p<0.0001, 2-Way ANOVA). In the cleared whole brains, initial analyses suggest that TH and c-Fos co-staining mirrors behavioral data with decreased co-staining in DATT356M+/- mice. Ongoing studies will identify the molecular basis of the effect of Mn, including changes to DAergic metabolism and transport and post-translational modification to the DAT. These findings demonstrate that alterations in T1W relaxation times, as measured by MRR, may serve as an early biomarker for Mn neurotoxicity. This neuroimaging approach exhibits remarkable accuracy in identifying Mn-susceptible brain regions, with a spatial resolution and sensitivity that surpasses current conventional dissection and mass spectrometry approaches. The capability to label and map TH and cFos expression across the entire brain provides insights into whole-brain neuronal activation and its connections to functional neural circuits and behavior following amphetamine and methylphenidate administration.

Keywords: manganese, environmental toxicology, dopamine dysfunction, biomarkers, drinking water, light sheet microscopy, magnetic resonance relaxometry (MRR)

Procedia PDF Downloads 16