Search results for: siamese networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2813

Search results for: siamese networks

1793 Learning Dynamic Representations of Nodes in Temporally Variant Graphs

Authors: Sandra Mitrovic, Gaurav Singh

Abstract:

In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.

Keywords: churn prediction, dynamic networks, node2vec, auto-encoders

Procedia PDF Downloads 314
1792 Making Social Accountability Initiatives Work in the Performance of Local Self-Governing Institutions: District-Level Analysis in Rural Assam, India

Authors: Pankaj Kumar Kalita

Abstract:

Ineffectiveness of formal institutional mechanisms such as official audit to improve public service delivery has been a serious concern to scholars working on governance reforms in developing countries. Scholars argue that public service delivery in local self-governing institutions can be improved through application of informal mechanisms such as social accountability. Social accountability has been reinforced with the engagement of citizens and civic organizations in the process of service delivery to reduce the governance gap in developing countries. However, there are challenges that may impede the scope of establishing social accountability initiatives in the performance of local self-governing institutions. This study makes an attempt to investigate the factors that may impede the scope of establishing social accountability, particularly in culturally heterogeneous societies like India. While analyzing the implementation of two rural development schemes by Panchayats, the local self-governing institutions functioning in rural Assam in India, this study argues that the scope of establishing social accountability in the performance of local self-governing institutions, particularly in culturally heterogeneous societies in developing countries will be impeded by the absence of inter-caste and inter-religion networks. Data has been collected from five selected districts of Assam using in-depth interview method and survey method. The study further contributes to the debates on 'good governance' and citizen-centric approaches in developing countries.

Keywords: citizen engagement, local self-governing institutions, networks, social accountability

Procedia PDF Downloads 319
1791 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 14
1790 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 497
1789 Internet Protocol Television: A Research Study of Undergraduate Students Analyze the Effects

Authors: Sabri Serkan Gulluoglu

Abstract:

The study is aimed at examining the effects of internet marketing with IPTV on human beings. Internet marketing with IPTV is emerging as an integral part of business strategies in today’s technologically advanced world and the business activities all over the world are influences with the emergence of this modern marketing tool. As the population of the Internet and on-line users’ increases, new research issues have arisen concerning the demographics and psychographics of the on-line user and the opportunities for a product or service. In recent years, we have seen a tendency of various services converging to the ubiquitous Internet Protocol based networks. Besides traditional Internet applications such as web browsing, email, file transferring, and so forth, new applications have been developed to replace old communication networks. IPTV is one of the solutions. In the future, we expect a single network, the IP network, to provide services that have been carried by different networks today. For finding some important effects of a video based technology market web site on internet, we determine to apply a questionnaire on university students. Recently some researches shows that in Turkey the age of people 20 to 24 use internet when they buy some electronic devices such as cell phones, computers, etc. In questionnaire there are ten categorized questions to evaluate the effects of IPTV when shopping. There were selected 30 students who are filling the question form after watching an IPTV channel video for 10 minutes. This sample IPTV channel is “buy.com”, it look like an e-commerce site with an integrated IPTV channel on. The questionnaire for the survey is constructed by using the Likert scale that is a bipolar scaling method used to measure either positive or negative response to a statement (Likert, R) it is a common system that is used is the surveys. By following the Likert Scale “the respondents are asked to indicate their degree of agreement with the statement or any kind of subjective or objective evaluation of the statement. Traditionally a five-point scale is used under this methodology”. For this study also the five point scale system is used and the respondents were asked to express their opinions about the given statement by picking the answer from the given 5 options: “Strongly disagree, Disagree, Neither agree Nor disagree, Agree and Strongly agree”. These points were also rates from 1-5 (Strongly disagree, Disagree, Neither disagree Nor agree, Agree, Strongly agree). On the basis of the data gathered from the questionnaire some results are drawn in order to get the figures and graphical representation of the study results that can demonstrate the outcomes of the research clearly.

Keywords: IPTV, internet marketing, online, e-commerce, video based technology

Procedia PDF Downloads 240
1788 Contact Zones and Fashion Hubs: From Circular Economy to Circular Neighbourhoods

Authors: Tiziana Ferrero-Regis, Marissa Lindquist

Abstract:

Circular Economy (CE) is increasingly seen as the reorganisation of production and consumption, and cities are acknowledged as the sources of many ecological and social problems; at the same time, they can be re-imagined through an ecologically and socially resilient future. The concept of the CE has received pointed critiques for its techno-deterministic orientation, focus on science and transformation by the policy. At the heart of our local re-imagining of the CE into circularity through contact zones there is the acknowledgment of collective, spontaneous and shared imaginations of alternative and sustainable futures through the creation of networks of community initiatives that are transformative, creating opportunities that simultaneously make cities rich and enrich humans. This paper presents a mapping project of the fashion and textile ecosystem in Brisbane, Queensland, Australia. Brisbane is currently the most aspirational city in Australia, as its population growth rate is the highest in the country. Yet, Brisbane is considered the least “fashion city” in the country. In contrast, the project revealed a greatly enhanced picture of distinct fashion and textile clusters across greater Brisbane and the adjacency of key services that may act to consolidate CE community contact zones. Clusters to the north of Brisbane and several locales to the south are zones of a greater mix between public/social amenities, walkable zones and local transport networks with educational precincts, community hubs, concentration of small enterprises, designers, artisans and waste recovery centers that will help to establish knowledge of key infrastructure networks that will support enmeshing these zones together. The paper presents two case studies of independent designers who work on new and re-designed clothing through recovering pre-consumer textiles and that operate from within creative precincts. The first case is designer Nelson Molloy, who recently returned to the inner city suburb of West End with their Chasing Zero Design project. The area was known in the 1980s and 1990s for its alternative lifestyle with creative independent production, thrifty clothing shops, alternative fashion and a socialist agenda. After 30 years of progressive gentrification of the suburb, which has dislocated many of the artists, designers and artisans, West End is seeing the return and amplification of clusters of artisans, artists, designers and architects. The other case study is Practice Studio, located in a new zone of creative growth, Bowen Hills, north of the CBD. Practice Studio combines retail with a workroom, offers repair and remaking services, becoming a point of reference for young and emerging Australian designers and artists. The paper demonstrates the spatial politics of the CE and the way in which new cultural capital is produced thanks to cultural specificities and resources. It argues for the recognition of contact zones that are created by local actors, communities and knowledge networks, whose grass-roots agency is fundamental for the co-production of CE’s systems of local governance.

Keywords: contact zones, circular citities, fashion and textiles, circular neighbourhoods, australia

Procedia PDF Downloads 100
1787 How Virtualization, Decentralization, and Network-Building Change the Manufacturing Landscape: An Industry 4.0 Perspective

Authors: Malte Brettel, Niklas Friederichsen, Michael Keller, Marius Rosenberg

Abstract:

The German manufacturing industry has to withstand an increasing global competition on product quality and production costs. As labor costs are high, several industries have suffered severely under the relocation of production facilities towards aspiring countries, which have managed to close the productivity and quality gap substantially. Established manufacturing companies have recognized that customers are not willing to pay large price premiums for incremental quality improvements. As a consequence, many companies from the German manufacturing industry adjust their production focusing on customized products and fast time to market. Leveraging the advantages of novel production strategies such as Agile Manufacturing and Mass Customization, manufacturing companies transform into integrated networks, in which companies unite their core competencies. Hereby, virtualization of the process- and supply-chain ensures smooth inter-company operations providing real-time access to relevant product and production information for all participating entities. Boundaries of companies deteriorate, as autonomous systems exchange data, gained by embedded systems throughout the entire value chain. By including Cyber-Physical-Systems, advanced communication between machines is tantamount to their dialogue with humans. The increasing utilization of information and communication technology allows digital engineering of products and production processes alike. Modular simulation and modeling techniques allow decentralized units to flexibly alter products and thereby enable rapid product innovation. The present article describes the developments of Industry 4.0 within the literature and reviews the associated research streams. Hereby, we analyze eight scientific journals with regards to the following research fields: Individualized production, end-to-end engineering in a virtual process chain and production networks. We employ cluster analysis to assign sub-topics into the respective research field. To assess the practical implications, we conducted face-to-face interviews with managers from the industry as well as from the consulting business using a structured interview guideline. The results reveal reasons for the adaption and refusal of Industry 4.0 practices from a managerial point of view. Our findings contribute to the upcoming research stream of Industry 4.0 and support decision-makers to assess their need for transformation towards Industry 4.0 practices.

Keywords: Industry 4.0., mass customization, production networks, virtual process-chain

Procedia PDF Downloads 277
1786 Analysis of Storm Flood in Typical Sewer Networks in High Mountain Watersheds of Colombia Based on SWMM

Authors: J. C. Hoyos, J. Zambrano Nájera

Abstract:

Increasing urbanization has led to changes in the natural dynamics of watersheds, causing problems such as increases in volumes of runoff, peak flow rates, and flow rates so that the risk of storm flooding increases. Sewerage networks designed 30 – 40 years ago don’t account for these increases in flow volumes and velocities. Besides, Andean cities with high slopes worsen the problem because velocities are even higher not allowing sewerage network work and causing cities less resilient to landscape changes and climatic change. In Latin America, especially Colombia, this is a major problem because urban population at late XX century was more than 70% is in urban areas increasing approximately in 790% in 1940-1990 period. Thus, it becomes very important to study how changes in hydrological behavior affect hydraulic capacity of sewerage networks in Andean Urban Watersheds. This research aims to determine the impact of urbanization in high-sloped urban watersheds in its hydrology. To this end it will be used as study area experimental urban watershed named Palogrande-San Luis watershed, located in the city of Manizales, Colombia. Manizales is a city in central western Colombia, located in Colombian Central Mountain Range (part of Los Andes Mountains) with an abrupt topography (average altitude is 2.153 m). The climate in Manizales is quite uniform, but due to its high altitude it presents high precipitations (1.545 mm/year average) with high humidity (83% average). Behavior of the current sewerage network will be reviewed by the hydraulic model SWMM (Storm Water Management Model). Based on SWMM the hydrological response of urban watershed selected will be evaluated under the design storm with different frequencies in the region, such as drainage effect and water-logging, overland flow on roads, etc. Cartographic information was obtained from a Geographic Information System (GIS) thematic maps of the Institute of Environmental Studies of the Universidad Nacional de Colombia and the utility Aguas de Manizales S.A. Rainfall and streamflow data is obtained from 4 rain gages and 1 stream gages. This information will allow determining critical issues on drainage systems design in urban watershed with very high slopes, and which practices will be discarded o recommended.

Keywords: land cover changes, storm sewer system, urban hydrology, urban planning

Procedia PDF Downloads 261
1785 Visual Simulation for the Relationship of Urban Fabric

Authors: Ting-Yu Lin, Han-Liang Lin

Abstract:

This article is about the urban form of visualization by Cityengine. City is composed of different domains, and each domain has its own fabric because of arrangement. For example, a neighborhood unit contains fabrics such as schools, street networks, residential and commercial spaces. Therefore, studying urban morphology can help us understand the urban form in planning process. Streets, plots, and buildings seem as urban fabrics, and they configure urban form. Traditionally, urban morphology usually discussed single parameter, which is building type, ignoring other parameters such as streets and plots. However, urban space is three-dimensional, instead of two-dimensional. People perceive urban space by their visualization. Therefore, using visualization can fill the gap between two dimensions and three dimensions. Hence, the study of urban morphology will strengthen the understanding of whole appearance of a city. Cityengine is a software which can edit, analyze and monitor the data and visualize the result for GIS, a common tool to analyze data and display the map for urban plan and urban design. Cityengine can parameterize the data of streets, plots and building types and visualize the result in three-dimensional way. The research will reappear the real urban form by visualizing. We can know whether the urban form can be parameterized and the parameterized result can match the real urban form. Then, visualizing the result by software in three dimension to analyze the rule of urban form. There will be three stages of the research. It will start with a field survey of Tainan East District in Taiwan to conclude the relationships between urban fabrics of street networks, plots and building types. Second, to visualize the relationship, it will turn the relationship into codes which Cityengine can read. Last, Cityengine will automatically display the result by visualizing.

Keywords: Cityengine, urban fabric, urban morphology, visual simulation

Procedia PDF Downloads 298
1784 The Impact of Quality Cost on Revenue Sharing in Supply Chain Management

Authors: Fayza M. Obied-Allah

Abstract:

Customer’ needs, quality, and value creation while reducing costs through supply chain management provides challenges and opportunities for companies and researchers. In the light of these challenges, modern ideas must contribute to counter these challenges and exploit opportunities. Perhaps this paper will be one of these contributions. This paper discusses the impact of the quality cost on revenue sharing as a most important incentive to configure business networks. No doubt that the costs directly affect the size of income generated by a business network, so this paper investigates the impact of quality costs on business networks revenue, and their impact on the decision to participate the revenue among the companies in the supply chain. This paper develops the quality cost approach to align with the modern era, the developed model includes five categories besides the well-known four categories (namely prevention costs, appraisal costs, internal failure costs, and external failure costs), a new category has been developed in this research as a new vision of the relationship between quality costs and innovations of industry. This new category is Recycle Cost. This paper is organized into six sections, Section I shows quality costs overview in the supply chain. Section II discusses revenue sharing between the parties in supply chain. Section III investigates the impact of quality costs in revenue sharing decision between partners in supply chain. The fourth section includes survey study and presents statistical results. Section V discusses the results and shows future opportunities for research. Finally, Section VI summarizes the theoretical and practical results of this paper.

Keywords: quality cost, recycle cost, revenue sharing, supply chain management

Procedia PDF Downloads 443
1783 Social Network Roles in Organizations: Influencers, Bridges, and Soloists

Authors: Sofia Dokuka, Liz Lockhart, Alex Furman

Abstract:

Organizational hierarchy, traditionally composed of individual contributors, middle management, and executives, is enhanced by the understanding of informal social roles. These roles, identified with organizational network analysis (ONA), might have an important effect on organizational functioning. In this paper, we identify three social roles – influencers, bridges, and soloists, and provide empirical analysis based on real-world organizational networks. Influencers are employees with broad networks and whose contacts also have rich networks. Influence is calculated using PageRank, initially proposed for measuring website importance, but now applied in various network settings, including social networks. Influencers, having high PageRank, become key players in shaping opinions and behaviors within an organization. Bridges serve as links between loosely connected groups within the organization. Bridges are identified using betweenness and Burt’s constraint. Betweenness quantifies a node's control over information flows by evaluating its role in the control over the shortest paths within the network. Burt's constraint measures the extent of interconnection among an individual's contacts. A high constraint value suggests fewer structural holes and lesser control over information flows, whereas a low value suggests the contrary. Soloists are individuals with fewer than 5 stable social contacts, potentially facing challenges due to reduced social interaction and hypothetical lack of feedback and communication. We considered social roles in the analysis of real-world organizations (N=1,060). Based on data from digital traces (Slack, corporate email and calendar) we reconstructed an organizational communication network and identified influencers, bridges and soloists. We also collected employee engagement data through an online survey. Among the top-5% of influencers, 10% are members of the Executive Team. 56% of the Executive Team members are part of the top influencers group. The same proportion of top influencers (10%) is individual contributors, accounting for just 0.6% of all individual contributors in the company. The majority of influencers (80%) are at the middle management level. Out of all middle managers, 19% hold the role of influencers. However, individual contributors represent a small proportion of influencers, and having information about these individuals who hold influential roles can be crucial for management in identifying high-potential talents. Among the bridges, 4% are members of the Executive Team, 16% are individual contributors, and 80% are middle management. Predominantly middle management acts as a bridge. Bridge positions of some members of the executive team might indicate potential micromanagement on the leader's part. Recognizing the individuals serving as bridges in an organization uncovers potential communication problems. The majority of soloists are individual contributors (96%), and 4% of soloists are from middle management. These managers might face communication difficulties. We found an association between being an influencer and attitude toward a company's direction. There is a statistically significant 20% higher perception that the company is headed in the right direction among influencers compared to non-influencers (p < 0.05, Mann-Whitney test). Taken together, we demonstrate that considering social roles in the company might indicate both positive and negative aspects of organizational functioning that should be considered in data-driven decision-making.

Keywords: organizational network analysis, social roles, influencer, bridge, soloist

Procedia PDF Downloads 104
1782 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
1781 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 47
1780 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 161
1779 Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and SHF Bands of Small Cell 5G Networks

Authors: Emanuel Teixeira, Anderson Ramos, Marisa Lourenço, Fernando J. Velez, Jon M. Peha

Abstract:

This article discusses the benefit cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60 and 73 GHz frequency bands and the influence of carrier-to-noise-plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies, by considering the unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimeter wavebands and for longest distances an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.

Keywords: millimetre wavebands, SHF band, SINR, cost benefit analysis, 5G

Procedia PDF Downloads 141
1778 Facing Global Competition through Participation in Global Innovation Networks: The Case of Mechatronics District in the Veneto Region

Authors: Monica Plechero

Abstract:

Many firms belonging to Italian industrial districts faced a crisis starting from 2000 and upsurging during 2008-2014. To remain competitive in the global market, these firms and their local systems need to renovate their traditional competitive advantages, strengthen their link with global flows of knowledge. This may be particularly relevant in sectors such as the mechatronics, that combine traditional knowledge domain with new knowledge domains (e.g. mechanics, electronics, and informatics). This sector is nowadays one of the key sectors within the so-called ‘smart specialization strategy’ that can lead part of the Italian traditional industry towards new economic developmental opportunities. This paper, by investigating the mechatronics district of the Veneto region, wants to shed new light on how firms of a local system can gain from the globalization of innovation and innovation networks. Methodologically, the paper relies on primary data collected through a survey targeting firms of the local system, as well as on a number of qualitative case studies. The relevant role of medium size companies in the district emerges as evident, as they have wider opportunities to be involved in different processes of globalization of innovation. Indeed, with respect to small companies, the size of medium firms allows them to exploit strategically international markets and globally distributed knowledge. Supporting medium firms’ global innovation strategies, and incentivizing their role as district gatekeepers, may strengthen the competitive capability of the local system and provide new opportunities to positively face global competition.

Keywords: global innovation network, industrial district, internationalization, innovation, mechatronics, Veneto region

Procedia PDF Downloads 230
1777 Mobile Number Portability

Authors: R. Geetha, J. Arunkumar, P. Gopal, D. Loganathan, K. Pavithra, C. Vikashini

Abstract:

Mobile Number Portability is an attempt to switch over from one network to another network facility for mobile based on applications. This facility is currently not available for mobile handsets. This application is intended to assist the mobile network and its service customers in understanding the criteria; this will serve as a universal set of requirements which must be met by the customers. This application helps the user's network portability. Accessing permission from the network provider to enable services to the user and utilizing the available network signals. It is enabling the user to make a temporary switch over to other network. The main aim of this research work is to adapt multiple networks at the time of no network coverage. It can be accessed at rural and geographical areas. This can be achieved by this mobile application. The application is capable of temporary switch over between various networks. With this application both the service provider and the network user are benefited. The service provider is benefited by charging a minimum cost for utilizing other network. It provides security in terms of password that is unique to avoid unauthorized users and to prevent loss of balance. The goal intended to be attained is a complete utilization of available network at significant situations and to provide feature that satisfy the customer needs. The temporary switch over is done to manage emergency calls when user is in rural or geographical area, where there will be a very low network coverage. Since people find it trend in using Android mobile, this application is designed as an Android applications, which can be freely downloaded and installed from Play store. In the current scenario, the service provider enables the user to change their network without shifting their mobile network. This application affords a clarification for users while they are jammed in a critical situation. This application is designed by using Android 4.2 and SQLite Version3.

Keywords: mobile number, random number, alarm, imei number, call

Procedia PDF Downloads 361
1776 Monitor Student Concentration Levels on Online Education Sessions

Authors: M. K. Wijayarathna, S. M. Buddika Harshanath

Abstract:

Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.

Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user

Procedia PDF Downloads 99
1775 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks

Authors: Gunasekaran Raja, Ramkumar Jayaraman

Abstract:

In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.

Keywords: cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing

Procedia PDF Downloads 265
1774 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System

Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli

Abstract:

Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.

Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 129
1773 Approach to Establish Logistics as a Central Scientific Discipline of Tomorrow's Industry

Authors: Johannes Dregger, Michael Schmidt, Christian Prasse, Michael ten Hompel

Abstract:

Most of the today’s companies face increasing need to operate efficiently. Driven by global trends like shorter product cycles, mass customization and the rising speed of delivery, manufacturing value chains are becoming more and more distributed. Manufacturing processes are becoming highly integrated, e.g. 3D printing. All these changes are affecting companies´ organization. They are leading towards individual, small scale, and ad-hoc logistics processes and structures, and finally, towards a significant increase in the importance of logistics itself since traditional value chains transform into agile value networks. In the past logistics has been following manufacturing but in the future industry, this role allocation might change. With this increase in the logistics practice of companies and businesses, the relevance of logistics research as the methodological foundation of logistics networks and processes is gaining importance. Logistics research is evolving into a central and highly interdisciplinary science for the future industry. Using the example of Germany, this paper discusses ways to establish logistics as a central scientific discipline of the future industry. About three million people work in the logistics sector in Germany. Only automotive and retail industry have more employees. Even though there is a bunch of logistics degree programs at more than 100 institutions of higher education, a common understanding of logistics as a research discipline is missing. In this paper an innovative approach will be presented, including; identified perspectives on logistics, such as process orientation, IT orientation or employees orientation, relevant scientific disciplines for logistics science, a concept for interdisciplinary research approaches to unify the perspectives of the different scientific disciplines on logistics and the methodological base of logistics science.

Keywords: logistics, logistics science, logistics management, future challenges

Procedia PDF Downloads 314
1772 Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks

Authors: Alaa Allakany, Koji Okamura

Abstract:

Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events).

Keywords: multicast tree, software define networks, tabu search, OpenFlow

Procedia PDF Downloads 263
1771 Role of IT Systems in Corporate Recruitment: Challenges and Constraints

Authors: Brahim Bellali, Fatima Bellali

Abstract:

The integration of information technology systems (ITS) into a company's human resources processes seems to be the appropriate solution to the problem of evolving and adapting its human resources management practices in order to be both more strategic and more efficient in terms of costs and service quality. In this context, the aim of this work is to study the impact of information technology systems (ITS) on the recruitment process. In this study, we targeted candidates who had recruited using IT tools. The target population consists of 34 candidates based in Casablanca, Morocco. In order to collect the data, a questionnaire had to be drawn up. The survey is based on a data sheet and a questionnaire that is divided into several sections to make it more structured and comprehensible. The results show that the majority of respondents say that companies are making greater use of online CV libraries and social networks as digital solutions during the recruitment process. The results also show that 50% of candidates say that the use of digital tools by companies would not slow them down when applying for a job and that these IT tools improve manual recruitment processes, while 44.1% think that they facilitate recruitment without any human intervention. The majority of respondents (52.9%) think that social networks are the digital solutions most often used by recruiters in the sourcing phase. The constraints of digital recruitment encountered are the dehumanization of human resources (44.1%) and the limited interaction during remote interviews (44.1%), which leaves no room for informal exchanges. Digital recruitment can be a highly effective strategy for finding qualified candidates in a variety of fields. Here are a few recommendations for optimizing your digital recruitment process: (1) Use online recruitment platforms: LinkedIn, Twitter, and Facebook ; (2) Use applicant tracking systems (ATS) ; (3) Develop a content marketing strategy.

Keywords: IT systems, recruitment, challenges, constraints

Procedia PDF Downloads 33
1770 The Challenges of Cloud Computing Adoption in Nigeria

Authors: Chapman Eze Nnadozie

Abstract:

Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.

Keywords: cloud computing, data centre, infrastructure, it resources, virtualization

Procedia PDF Downloads 351
1769 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40
1768 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving

Authors: Yasin Tadayonrad

Abstract:

Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.

Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming

Procedia PDF Downloads 91
1767 Impact of Information Technology Systems on the Recruitment Process in Morocco

Authors: Brahim Bellali, Fatima Bellali

Abstract:

The integration of information technology systems (ITS) into a company's ‘human resources processes seems to be the appropriate solution to the problem of evolving and adapting its human resources management practices in order to be both more strategic and more efficient in terms of costs and service quality. In this context, the aim of this work is to study the impact of information technology systems (ITS) on the recruitment process. In this study, we targeted candidates who had recruited using IT tools. The target population consists of 34 candidates based in Casablanca, Morocco. In order to collect the data, a questionnaire had to be drawn up. The survey is based on a data sheet and a questionnaire that is divided into several sections to make it more structured and comprehensible. The results show that the majority of respondents say that companies are making greater use of online CV libraries and social networks as digital solutions during the recruitment process. The results also show that 50% of candidates say that the use of digital tools by companies would not slow them down when applying for a job and that these IT tools improve manual recruitment processes, while 44.1% think that they facilitate recruitment without any human intervention. The majority of respondents (52.9%) think that social networks are the digital solutions most often used by recruiters in the sourcing phase. The constraints of digital recruitment encountered are the dehumanization of human resources (44.1%) and the limited interaction during remote interviews (44.1%), which leaves no room for informal exchanges. Digital recruitment can be a highly effective strategy for finding qualified candidates in a variety of fields. Here are a few recommendations for optimizing your digital recruitment process: (1) Use online recruitment platforms: LinkedIn, Twitter, and Facebook ; (2) Use applicant tracking systems (ATS) ; (3) Develop a content marketing strategy.

Keywords: IT systems, recruitment, challenges, constraints

Procedia PDF Downloads 9
1766 Impact of Information Technology Systems on the Recruitment Process in Morocco

Authors: Bellali Brahim, Bellali Fatima

Abstract:

The integration of information technology systems (ITS) into a company's ‘human resources processes seems to be the appropriate solution to the problem of evolving and adapting its human resources management practices in order to be both more strategic and more efficient in terms of costs and service quality. In this context, the aim of this work is to study the impact of nformation technology systems (ITS) on the recruitment process. In this study, we targeted candidates who had recruited using IT tools. The target population consists of 34 candidates based in Casablanca, Morocco. In order to collect the data, a questionnaire had to be drawn up. The survey is based on a data sheet and a questionnaire that is divided into several sections to make it more structured and comprehensible. The results show that the majority of respondents say that companies are making greater use of online CV libraries and social networks as digital solutions during the recruitment process. The results also show that 50% of candidates say that the use of digital tools by companies would not slow them down when applying for a job and that these IT tools improve manual recruitment processes, while 44.1% think that they facilitate recruitment without any human intervention. The majority of respondents (52.9%) think that social networks are the digital solutions most often used by recruiters in the sourcing phase. The constraints of digital recruitment encountered are the dehumanization of human resources (44.1%) and the limited interaction during remote interviews (44.1%), which leaves no room for informal exchanges. Digital recruitment can be a highly effective strategy for finding qualified candidates in a variety of fields. Here are a few recommendations for optimizing your digital recruitment process: (1) Use online recruitment platforms: LinkedIn, Twitter, and Facebook ; (2) Use applicant tracking systems (ATS) ; (3) Develop a content marketing strategy.

Keywords: IT systems, recruitment, challenges, constraints

Procedia PDF Downloads 26
1765 The Effects of Qigong Exercise Intervention on the Cognitive Function in Aging Adults

Authors: D. Y. Fong, C. Y. Kuo, Y. T. Chiang, W. C. Lin

Abstract:

Objectives: Qigong is an ancient Chinese practice in pursuit of a healthier body and a more peaceful mindset. It emphasizes on the restoration of vital energy (Qi) in body, mind, and spirit. The practice is the combination of gentle movements and mild breathing which help the doers reach the condition of tranquility. On account of the features of Qigong, first, we use cross-sectional methodology to compare the differences among the varied levels of Qigong practitioners on cognitive function with event-related potential (ERP) and electroencephalography (EEG). Second, we use the longitudinal methodology to explore the effects on the Qigong trainees for pretest and posttest on ERP and EEG. Current study adopts Attentional Network Test (ANT) task to examine the participants’ cognitive function, and aging-related researches demonstrated a declined tread on the cognition in older adults and exercise might ameliorate the deterioration. Qigong exercise integrates physical posture (muscle strength), breathing technique (aerobic ability) and focused intention (attention) that researchers hypothesize it might improve the cognitive function in aging adults. Method: Sixty participants were involved in this study, including 20 young adults (21.65±2.41 y) with normal physical activity (YA), 20 Qigong experts (60.69 ± 12.42 y) with over 7 years Qigong practice experience (QE), and 20 normal and healthy adults (52.90±12.37 y) with no Qigong practice experience as experimental group (EG). The EG participants took Qigong classes 2 times a week and 2 hours per time for 24 weeks with the purpose of examining the effect of Qigong intervention on cognitive function. ANT tasks (alert network, orient network, and executive control) were adopted to evaluate participants’ cognitive function via ERP’s P300 components and P300 amplitude topography. Results: Behavioral data: 1.The reaction time (RT) of YA is faster than the other two groups, and EG was faster than QE in the cue and flanker conditions of ANT task. 2. The RT of posttest was faster than pretest in EG in the cue and flanker conditions. 3. No difference among the three groups on orient, alert, and execute control networks. ERP data: 1. P300 amplitude detection in QE was larger than EG at Fz electrode in orient, alert, and execute control networks. 2. P300 amplitude in EG was larger at pretest than posttest on the orient network. 3. P300 Latency revealed no difference among the three groups in the three networks. Conclusion: Taken together these findings, they provide neuro-electrical evidence that older adults involved in Qigong practice may develop a more overall compensatory mechanism and also benefit the performance of behavior.

Keywords: Qigong, cognitive function, aging, event-related potential (ERP)

Procedia PDF Downloads 393
1764 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 468