Search results for: support vector data description
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30398

Search results for: support vector data description

29528 Mapping a Data Governance Framework to the Continuum of Care in the Active Assisted Living Context

Authors: Gaya Bin Noon, Thoko Hanjahanja-Phiri, Laura Xavier Fadrique, Plinio Pelegrini Morita, Hélène Vaillancourt, Jennifer Teague, Tania Donovska

Abstract:

Active Assisted Living (AAL) refers to systems designed to improve the quality of life, aid in independence, and create healthier lifestyles for care recipients. As the population ages, there is a pressing need for non-intrusive, continuous, adaptable, and reliable health monitoring tools to support aging in place. AAL has great potential to support these efforts with the wide variety of solutions currently available, but insufficient efforts have been made to address concerns arising from the integration of AAL into care. The purpose of this research was to (1) explore the integration of AAL technologies and data into the clinical pathway, and (2) map data access and governance for AAL technology in order to develop standards for use by policy-makers, technology manufacturers, and developers of smart communities for seniors. This was done through four successive research phases: (1) literature search to explore existing work in this area and identify lessons learned; (2) modeling of the continuum of care; (3) adapting a framework for data governance into the AAL context; and (4) interviews with stakeholders to explore the applicability of previous work. Opportunities for standards found in these research phases included a need for greater consistency in language and technology requirements, better role definition regarding who can access and who is responsible for taking action based on the gathered data, and understanding of the privacy-utility tradeoff inherent in using AAL technologies in care settings.

Keywords: active assisted living, aging in place, internet of things, standards

Procedia PDF Downloads 132
29527 Policy Guidelines to Enhance the Mathematics Teachers’ Association of the Philippines (MTAP) Saturday Class Program

Authors: Roselyn Alejandro-Ymana

Abstract:

The study was an attempt to assess the MTAP Saturday Class Program along its eight components namely, modules, instructional materials, scheduling, trainer-teachers, supervisory support, administrative support, financial support and educational facilities, the results of which served as bases in developing policy guidelines to enhance the MTAP Saturday Class Program. Using a descriptive development method of research, this study involved the participation of twenty-eight (28) schools with MTAP Saturday Class Program in the Division of Dasmarinas City where twenty-eight school heads, one hundred twenty-five (125) teacher-trainer, one hundred twenty-five (125) pupil program participants, and their corresponding one hundred twenty-five (125) parents were purposively drawn to constitute the study’s respondent. A self-made validated survey questionnaire together with Pre and Post-Test Assessment Test in Mathematics for pupils participating in the program, and an unstructured interview guide was used to gather the data needed in the study. Data obtained from the instruments administered was organized and analyzed through the use of statistical tools that included the Mean, Weighted Mean, Relative Frequency, Standard Deviation, F-Test or One-Way ANOVA and the T-Test. Results of the study revealed that all the eight domains involved in the MTAP Saturday Class Program were practiced with the areas of 'trainer-teachers', 'educational facilities', and 'supervisory support' identified as the program’s strongest components while the areas of 'financial support', 'modules' and 'scheduling' as being the weakest program’s components. Moreover, the study revealed based on F-Test, that there was a significant difference in the assessment made by the respondents in each of the eight (8) domains. It was found out that the parents deviated significantly from the assessment of either the school heads or the teachers on the indicators of the program. There is much to be desired when it comes to the quality of the implementation of the MTAP Saturday Class Program. With most of the indicators of each component of the program, having received overall average ratings that were at least 0.5 point away from the ideal rating 5 for total quality, school heads, teachers, and supervisors need to work harder for total quality of the implementation of the MTAP Saturday Class Program in the division.

Keywords: mathematics achievement, MTAP program, policy guidelines, program assessment

Procedia PDF Downloads 212
29526 Building in Language Support in a Hong Kong Chemistry Classroom with English as a Medium of Instruction: An Exploratory Study

Authors: Kai Yip Michael Tsang

Abstract:

Science writing has played a crucial part in science assessments. This paper reports a study in an area that has received little research attention – how Language across the Curriculum (LAC, i.e. science language and literacy) learning activities in science lessons can increase the science knowledge development of English as a foreign language (EFL) students in Hong Kong. The data comes from a school-based interventional study in chemistry classrooms, with written data from questionnaires, assessments and teachers’ logs and verbal data from interviews and classroom observations. The effectiveness of the LAC teaching and learning activities in various chemistry classrooms were compared and evaluated, with discussion of some implications. Students in the treatment group with lower achieving students received LAC learning and teaching activities while students in the control group with higher achieving students received conventional learning and teaching activities. After the study, they performed better in control group in formative assessments. Moreover, they had a better attitude to learning chemistry content with a richer language support. The paper concludes that LAC teaching and learning activities yielded positive learning outcomes among chemistry learners with low English ability.

Keywords: science learning and teaching, content and language integrated learning, language across the curriculum, English as a foreign language

Procedia PDF Downloads 190
29525 Design Criteria for an Internal Information Technology Cost Allocation to Support Business Information Technology Alignment

Authors: Andrea Schnabl, Mario Bernhart

Abstract:

The controlling instrument of an internal cost allocation (IT chargeback) is commonly used to make IT costs transparent and controllable. Information Technology (IT) became, especially for information industries, a central competitive factor. Consequently, the focus is not on minimizing IT costs but on the strategic aligned application of IT. Hence, an internal IT cost allocation should be designed to enhance the business-IT alignment (strategic alignment of IT) in order to support the effective application of IT from a company’s point of view. To identify design criteria for an internal cost allocation to support business alignment a case study analysis at a typical medium-sized firm in information industry is performed. Documents, Key Performance Indicators, and cost accounting data over a period of 10 years are analyzed and interviews are performed. The derived design criteria are evaluated by 6 heads of IT departments from 6 different companies, which have an internal IT cost allocation at use. By applying these design criteria an internal cost allocation serves not only for cost controlling but also as an instrument in strategic IT management.

Keywords: accounting for IT services, Business IT Alignment, internal cost allocation, IT controlling, IT governance, strategic IT management

Procedia PDF Downloads 155
29524 Video Text Information Detection and Localization in Lecture Videos Using Moments

Authors: Belkacem Soundes, Guezouli Larbi

Abstract:

This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time.

Keywords: text detection, text localization, lecture videos, pseudo zernike moments

Procedia PDF Downloads 152
29523 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 50
29522 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 52
29521 Divorce Advice and Parents' Council Support Groups: Help for Divorced Parents to Create Co-Parenting after Divorce

Authors: Paivi Hietanen

Abstract:

At family with children, divorce is a risk for a child to lose the relationship to the parent with whom the child doesn't live. A child has the right to the get care from both parents after the divorce. Even though your ex-spouse isn’t longer your companion, to the child he or she is still unique as a parent and parents must cooperate and support their child in the new family situation. To divorcee, it's necessary to understand the difference between the intimate relationship that ends and parenthood that continues. Cooperative parenting takes a lot of effort and flexibility for the parents to make joint custody work well. It is vital that parents get help to understand the situation from child points of view. When parent is facing divorce, and all the emotions that it brings along, can the child easily be forgotten. To help children, we must help parents to understand, that a relationship can end, parenthood cannot. As professionals, we should help the parents to see the significance and value of both parents to the child and try to support and protect parenthood-relationship between parents. The Federation of Mother and Child Homes and Shelters have developed group models to work with parents during or after divorce. These support groups are led by professionals, but peer support is also used. These support groups have been held over 10 years and there are found from 20 different cities in Finland. Eroneuvo event (divorce advice) service is intended for parents who are considering or have already divorced. The Vanhemman neuvo (parents' council) is a peer support group that helps parents with post-divorce parenting issues. From these groups, parents receive information and peer support for matters related to divorcing and how to support the child and do co-parenting. At the groups and in given information for divorced parents, is used a method called the 'Irreversible triangle'. It's a way to picture the intimate relationship and parenthood after the divorce and what is the difference between these two things. 'Irreversible triangle' is used to help parents and professionals to understand, what happens if a child loses the relationship to the other parent or if parents co-parenting doesn't work well. From the largely collected feedback, group members tell that they feel themselves relieved after taking part of the group. Parents also experience that talking with other parents helps to survive. Group members learn to co-operate with the other parent, and they'll also learn to see the best interest of the child after the divorce. Parents would highly recommend these groups to other parents.

Keywords: child's right, co-parenting, parenthood after the divorce, peer support

Procedia PDF Downloads 166
29520 Describing Cognitive Decline in Alzheimer's Disease via a Picture Description Writing Task

Authors: Marielle Leijten, Catherine Meulemans, Sven De Maeyer, Luuk Van Waes

Abstract:

For the diagnosis of Alzheimer's disease (AD), a large variety of neuropsychological tests are available. In some of these tests, linguistic processing - both oral and written - is an important factor. Language disturbances might serve as a strong indicator for an underlying neurodegenerative disorder like AD. However, the current diagnostic instruments for language assessment mainly focus on product measures, such as text length or number of errors, ignoring the importance of the process that leads to written or spoken language production. In this study, it is our aim to describe and test differences between cognitive and impaired elderly on the basis of a selection of writing process variables (inter- and intrapersonal characteristics). These process variables are mainly related to pause times, because the number, length, and location of pauses have proven to be an important indicator of the cognitive complexity of a process. Method: Participants that were enrolled in our research were chosen on the basis of a number of basic criteria necessary to collect reliable writing process data. Furthermore, we opted to match the thirteen cognitively impaired patients (8 MCI and 5 AD) with thirteen cognitively healthy elderly. At the start of the experiment, participants were each given a number of tests, such as the Mini-Mental State Examination test (MMSE), the Geriatric Depression Scale (GDS), the forward and backward digit span and the Edinburgh Handedness Inventory (EHI). Also, a questionnaire was used to collect socio-demographic information (age, gender, eduction) of the subjects as well as more details on their level of computer literacy. The tests and questionnaire were followed by two typing tasks and two picture description tasks. For the typing tasks participants had to copy (type) characters, words and sentences from a screen, whereas the picture description tasks each consisted of an image they had to describe in a few sentences. Both the typing and the picture description tasks were logged with Inputlog, a keystroke logging tool that allows us to log and time stamp keystroke activity to reconstruct and describe text production processes. The main rationale behind keystroke logging is that writing fluency and flow reveal traces of the underlying cognitive processes. This explains the analytical focus on pause (length, number, distribution, location, etc.) and revision (number, type, operation, embeddedness, location, etc.) characteristics. As in speech, pause times are seen as indexical of cognitive effort. Results. Preliminary analysis already showed some promising results concerning pause times before, within and after words. For all variables, mixed effects models were used that included participants as a random effect and MMSE scores, GDS scores and word categories (such as determiners and nouns) as a fixed effect. For pause times before and after words cognitively impaired patients paused longer than healthy elderly. These variables did not show an interaction effect between the group participants (cognitively impaired or healthy elderly) belonged to and word categories. However, pause times within words did show an interaction effect, which indicates pause times within certain word categories differ significantly between patients and healthy elderly.

Keywords: Alzheimer's disease, keystroke logging, matching, writing process

Procedia PDF Downloads 366
29519 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 20
29518 Public Debt Shocks and Public Goods Provisioning in Nigeria: Implication for National Development

Authors: Amenawo I. Offiong, Hodo B. Riman

Abstract:

Public debt profile of Nigeria has continuously been on the increase over the years. The drop in international crude oil prices has further worsened revenue position of the country, thus, necessitating further acquisition of public debt to bridge the gap in revenue deficit. Yet, when we look back at the increasing public sector spending, there are concerns that the government spending do not amount to increase in public goods provided for the country. Using data from 1980 to 2014 the study therefore seeks to investigate the factors responsible for the poor provision of public goods in the face of increasing public debt profile. Using the unrestricted VAR model Governance and Tax revenue were introduced into the model as structural variables. The result suggested that governance and tax revenue were structural determinants of the effectiveness of public goods provisioning in Nigeria. The study therefore identified weak governance as the major reason for the non-provision of public goods in Nigeria. While tax revenue exerted positive influence on the provisions of public goods, weak/poor governance was observed to crowd the benefits from increase tax revenue. The study therefore recommends reappraisal of the governance system in Nigeria. Elected officers in governance should be more transparent and accountable to the electorates they represent. Furthermore, the study advocates for an annual auditing of all government MDAs accounts by external auditors to ensure (a) accountability of public debts utilization, (b) transparent in implementation of program support funds, (c) integrity of agencies responsible for program management, and (d) measuring program effectiveness with amount of funds expended.

Keywords: impulse response function, public debt shocks, governance, public goods, tax revenue, vector auto-regression

Procedia PDF Downloads 273
29517 Analyzing the Technology Affecting on the Social Integration of Students at University

Authors: Sujit K. Basak, Simon Collin

Abstract:

The aim of this paper is to examine the technology access and use on the affecting social integration of local students at university. This aim is achieved by designing a structural equation modeling (SEM) in terms of integration with peers, integration with faculty, faculty support and on the other hand, examining the socio demographic impact on the technology access and use. The collected data were analyzed using the WarpPLS 5.0 software. This study was survey based and it was conducted at a public university in Canada. The results of the study indicated that technology has a strong impact on integration with faculty, faculty support, but technology does not have an impact on integration with peers. However, the social demographic has also an impact on the technology access and use.

Keywords: faculty, integration, peer, technology access and use

Procedia PDF Downloads 513
29516 An Efficient Traceability Mechanism in the Audited Cloud Data Storage

Authors: Ramya P, Lino Abraham Varghese, S. Bose

Abstract:

By cloud storage services, the data can be stored in the cloud, and can be shared across multiple users. Due to the unexpected hardware/software failures and human errors, which make the data stored in the cloud be lost or corrupted easily it affected the integrity of data in cloud. Some mechanisms have been designed to allow both data owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the cloud server. But public auditing on the integrity of shared data with the existing mechanisms will unavoidably reveal confidential information such as identity of the person, to public verifiers. Here a privacy-preserving mechanism is proposed to support public auditing on shared data stored in the cloud. It uses group signatures to compute verification metadata needed to audit the correctness of shared data. The identity of the signer on each block in shared data is kept confidential from public verifiers, who are easily verifying shared data integrity without retrieving the entire file. But on demand, the signer of the each block is reveal to the owner alone. Group private key is generated once by the owner in the static group, where as in the dynamic group, the group private key is change when the users revoke from the group. When the users leave from the group the already signed blocks are resigned by cloud service provider instead of owner is efficiently handled by efficient proxy re-signature scheme.

Keywords: data integrity, dynamic group, group signature, public auditing

Procedia PDF Downloads 392
29515 Health, Social Integration and Social Justice: The Lived Experiences of Young Middle-Eastern Refugees in Australia

Authors: Pranee Liamputtong, Hala Kurban

Abstract:

Based on the therapeutic landscape theory, this paper examines how young Middle-Eastern refugee individuals perceive their health and well-being and address the barriers they face in their new homeland and the means that helped them to form social connections in their new social environment. Qualitative methods (in-depth interviews and mapping activities) were conducted with ten young people from refugee backgrounds. Thematic analysis method was used to analyse the data. Findings suggested that the young refugees face various structural and cultural inequalities that significantly influenced their health and well-being. Mental health well-being was their greatest health concern. All reported the significant influence the English language had on their ability to adapt and form connections with their social environment. The presence of positive social support in their new social environment had a great impact on the health and well-being of the participants. The findings of this study have implications for social justice among refugees. They also contributed to the role of therapeutic landscapes and social support in helping young refugees to feel that they belonged to the society, and hence assisted them to adapt to their new living situation.

Keywords: young refugees, Middle-Eastern, social support, social justice

Procedia PDF Downloads 357
29514 Towards a Model of Support in the Areas of Services of Educational Assistance and Tutoring in Middle Education in Mexico

Authors: Margarita Zavala, Julio Rolón, Gabriel Chavira, José González, Jorge Orozco, Roberto Pichardo

Abstract:

Adolescence is a neuralgic stage in the formation of every human being, generally at this stage is when the middle school level is studied. In 2006 in Mexico incorporated “mentoring" space to assist students in their integration and participation in life. In public middle schools, is sometimes difficult to be aware of situations that affect students because of the number of them and traditional records management. Whit this they lose the opportunity to provide timely support as a preventive way. In order to provide this support, it is required to know the students by detecting the relevant information that has greater impact on their learning process. This research is looking to check if it is possible to identify student’s relevant information to detect when it is at risk, and then to propose a model to manage in a proper way such information.

Keywords: adolescence, mentoring, middle school students, mentoring system support

Procedia PDF Downloads 421
29513 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis

Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski

Abstract:

The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.

Keywords: cloud service, geodata cube, multiresolution, raster geodata

Procedia PDF Downloads 136
29512 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 336
29511 Analysis of Business Intelligence Tools in Healthcare

Authors: Avishkar Gawade, Omkar Bansode, Ketan Bhambure, Bhargav Deore

Abstract:

In recent year wide range of business intelligence technology have been applied to different area in order to support decision making process BI enables extraction of knowledge from data store. BI tools usually used in public health field for financial and administrative purposes.BI uses a dashboard in presentation stage to deliver information to information to end users.In this paper,we intend to analyze some open source BI tools on the market and their applicability in the clinical sphere taking into consideration the general characteristics of the clinical environment.A pervasive BI platform was developed using a real case in order to prove the tool viability.Analysis of various BI Tools in done with the help of several parameters such as data security,data integration,data quality reporting and anlaytics,performance,scalability and cost effectivesness.

Keywords: CDSS, EHR, business intelliegence, tools

Procedia PDF Downloads 137
29510 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating

Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon

Abstract:

Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.

Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering

Procedia PDF Downloads 253
29509 Introduction of Robust Multivariate Process Capability Indices

Authors: Behrooz Khalilloo, Hamid Shahriari, Emad Roghanian

Abstract:

Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices.

Keywords: multivariate process capability indices, robust M-estimator, outlier, multivariate quality control, statistical quality control

Procedia PDF Downloads 283
29508 Judicial Analysis of the Burden of Proof on the Perpetrator of Corruption Criminal Act

Authors: Rahmayanti, Theresia Simatupang, Ronald H. Sianturi

Abstract:

Corruption criminal act develops rapidly since in the transition era there is weakness in law. Consequently, there is an opportunity for a few people to do fraud and illegal acts and to misuse their positions and formal functions in order to make them rich, and the criminal acts are done systematically and sophisticatedly. Some people believe that legal provisions which specifically regulate the corruption criminal act; namely, Law No. 31/1999 in conjunction with Law No. 20/2001 on the Eradication of Corruption Criminal Act are not effective any more, especially in onus probandi (the burden of proof) on corruptors. The research was a descriptive analysis, a research method which is used to obtain description on a certain situation or condition by explaining the data, and the conclusion is drawn through some analyses. The research used judicial normative approach since it used secondary data as the main data by conducting library research. The system of the burden of proof, which follows the principles of reversal of the burden of proof stipulated in Article 12B, paragraph 1 a and b, Article 37A, and Article 38B of Law No. 20/2001 on the Amendment of Law No. 31/1999, is used only as supporting evidence when the principal case is proved. Meanwhile, how to maximize the implementation of the burden of proof on the perpetrators of corruption criminal act in which the public prosecutor brings a corruption case to Court, depends upon the nature of the case and the type of indictment. The system of burden of proof can be used to eradicate corruption in the Court if some policies and general principles of justice such as independency, impartiality, and legal certainty, are applied.

Keywords: burden of proof, perpetrator, corruption criminal act

Procedia PDF Downloads 321
29507 Migrant Women English Instructors' Transformative Workplace Learning Experiences in Post-Secondary English Language Programs in Ontario, Canada

Authors: Justine Jun

Abstract:

This study aims to reveal migrant women English instructors' workplace learning experiences in Canadian post-secondary institutions in Ontario. Although many scholars have conducted research studies on internationally educated teachers and their professional and employment challenges, few studies have recorded migrant women English language instructors’ professional learning and support experiences in post-secondary English language programs in Canada. This study employs a qualitative research paradigm. Mezirow’s Transformative Learning Theory is an essential lens for the researcher to explain, analyze, and interpret the research data. It is a collaborative research project. The researcher and participants cooperatively create photographic or other artwork data responding to the research questions. Photovoice and arts-informed data collection methodology are the main methods. Research participants engage in the study as co-researchers and inquire about their own workplace learning experiences, actively utilizing their critical self-reflective and dialogic skills. Co-researchers individually select the forms of artwork they prefer to engage with to represent their transformative workplace learning experiences about the Canadian workplace cultures that they underwent while working with colleagues and administrators in the workplace. Once the co-researchers generate their cultural artifacts as research data, they collaboratively interpret their artworks with the researcher and other volunteer co-researchers. Co-researchers jointly investigate the themes emerging from the artworks. They also interpret the meanings of their own and others’ workplace learning experiences embedded in the artworks through interactive one-on-one or group interviews. The following are the research questions that the migrant women English instructor participants examine and answer: (1) What have they learned about their workplace culture and how do they explain their learning experiences?; (2) How transformative have their learning experiences been at work?; (3) How have their colleagues and administrators influenced their transformative learning?; (4) What kind of support have they received? What supports have been valuable to them and what changes would they like to see?; (5) What have their learning experiences transformed?; (6) What has this arts-informed research process transformed? The study findings implicate English language instructor support currently practiced in post-secondary English language programs in Ontario, Canada, especially for migrant women English instructors. This research is a doctoral empirical study in progress. This research has the urgency to address the research problem that few studies have investigated migrant English instructors’ professional learning and support issues in the workplace, precisely that of English instructors working with adult learners in Canada. While appropriate social and professional support for migrant English instructors is required throughout the country, the present workplace realities in Ontario's English language programs need to be heard soon. For that purpose, the conceptualization of this study is crucial. It makes the investigation of under-represented instructors’ under-researched social phenomena, workplace learning and support, viable and rigorous. This paper demonstrates the robust theorization of English instructors’ workplace experiences using Mezirow’s Transformative Learning Theory in the English language teacher education field.

Keywords: English teacher education, professional learning, transformative learning theory, workplace learning

Procedia PDF Downloads 129
29506 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy

Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed

Abstract:

The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.

Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy

Procedia PDF Downloads 540
29505 Gamification of eHealth Business Cases to Enhance Rich Learning Experience

Authors: Kari Björn

Abstract:

Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.

Keywords: engineering education, integrated curriculum, learning experience, learning outcomes

Procedia PDF Downloads 240
29504 A Greedy Alignment Algorithm Supporting Medication Reconciliation

Authors: David Tresner-Kirsch

Abstract:

Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.

Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm

Procedia PDF Downloads 285
29503 Cultural Orientation as a Moderator between Social Support Needs and Psychological Well-Being among Canadian University Students

Authors: Allison Streutker, Josephine Tan

Abstract:

Universities across Canada have experienced unprecedented growth in international student enrollment from across the world. As cultural diversity in Canada and other countries increases, understanding the social support needs of all students is important for providing them with the assistance they need to thrive psychologically and academically. Those from individualistic cultural orientations tend to seek explicit social support, which involves expressly asking for assistance in times of stress. However, those from collectivistic cultural orientations are more likely to seek implicit social support, where encouragement is obtained from spending time among valued social groups without explicitly talking about problems. This study explored whether the relationship between the type of social support needs (implicit or explicit) and psychological and academic functioning might be moderated by cultural orientations (individualistic, collectivistic) among university students. Participants were 110 university students (70 women, 40 men; mean age = 24.8 years, SD = 6.6). They completed the Individualism and Collectivism Scale (ICS), Perceived Stress Scale (PSS), Interpersonal Support Evaluation List (ISEL) which assesses implicit and explicit social support, Satisfaction with Life Scale (SWLS), Scale of Positive and Negative Experience (SPANE) which yields positive and negative experience scores, Flourishing Scale (FS), and reported their grade point average (GPA) as a measure of academic performance. Moderated regression analysis demonstrated that, for those scoring lower on individualism, reporting lower level of implicit support predicted higher levels of perceived stress. For those scoring higher on individualism, lower levels of explicit social support predicted higher levels of perceived stress and a greater number of negative experiences. Generally, higher levels of implicit support were associated with greater satisfaction with life for all students, with the association becoming stronger among students with higher collectivism scores. No other significant findings were found. The results point to the value of considering the cultural orientations of students when designing programs to maintain and improve their sense of well-being.

Keywords: cultural orientation, social support, university students, well-being

Procedia PDF Downloads 236
29502 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors

Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira

Abstract:

The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.

Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance

Procedia PDF Downloads 350
29501 Source Separation for Global Multispectral Satellite Images Indexing

Authors: Aymen Bouzid, Jihen Ben Smida

Abstract:

In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach.

Keywords: blind source separation, content based image retrieval, feature extraction multispectral, satellite images

Procedia PDF Downloads 403
29500 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 69
29499 Additive Manufacturing of Overhangs: From Temporary Supports to Self-Support

Authors: Paulo Mendonca, Nzar Faiq Naqeshbandi

Abstract:

The objective of this study is to propose an interactive design environment that outlines the underlying computational framework to reach self-supporting overhangs. The research demonstrates the digital printability of overhangs taking into consideration factors related to the geometry design, the material used, the applied support, and the printing set-up of slicing and the extruder inclination. Parametric design tools can contribute to the design phase, form-finding, and stability optimization of self-supporting structures while printing in order to hold the components in place until they are sufficiently advanced to support themselves. The challenge is to ensure the stability of the printed parts in the critical inclinations during the whole fabrication process. Facilitating the identification of parameterization will allow to predict and optimize the process. Later, in the light of the previous findings, some guidelines of simulations and physical tests are given to be conducted for estimating the structural and functional performance.

Keywords: additive manufacturing, overhangs, self-support overhangs, printability, parametric tools

Procedia PDF Downloads 122