Search results for: mixed integer linear programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6726

Search results for: mixed integer linear programming

6 Tackling the Decontamination Challenge: Nanorecycling of Plastic Waste

Authors: Jocelyn Doucet, Jean-Philippe Laviolette, Ali Eslami

Abstract:

The end-of-life management and recycling of polymer wastes remains a key environment issue in on-going efforts to increase resource efficiency and attaining GHG emission reduction targets. Half of all the plastics ever produced were made in the last 13 years, and only about 16% of that plastic waste is collected for recycling, while 25% is incinerated, 40% is landfilled, and 19% is unmanaged and leaks in the environment and waterways. In addition to the plastic collection issue, the UN recently published a report on chemicals in plastics, which adds another layer of challenge when integrating recycled content containing toxic products into new products. To tackle these important issues, innovative solutions are required. Chemical recycling of plastics provides new complementary alternatives to the current recycled plastic market by converting waste material into a high value chemical commodity that can be reintegrated in a variety of applications, making the total market size of the output – virgin-like, high value products - larger than the market size of the input – plastic waste. Access to high-quality feedstock also remains a major obstacle, primarily due to material contamination issues. Pyrowave approaches this challenge with its innovative nano-recycling technology, which purifies polymers at the molecular level, removing undesirable contaminants and restoring the resin to its virgin state without having to depolymerise it. This breakthrough approach expands the range of plastics that can be effectively recycled, including mixed plastics with various contaminants such as lead, inorganic pigments, and flame retardants. The technology allows yields below 100ppm, and purity can be adjusted to an infinitesimal level depending on the customer's specifications. The separation of the polymer and contaminants in Pyrowave's nano-recycling process offers the unique ability to customize the solution on targeted additives and contaminants to be removed based on the difference in molecular size. This precise control enables the attainment of a final polymer purity equivalent to virgin resin. The patented process involves dissolving the contaminated material using a specially formulated solvent, purifying the mixture at the molecular level, and subsequently extracting the solvent to yield a purified polymer resin that can directly be reintegrated in new products without further treatment. Notably, this technology offers simplicity, effectiveness, and flexibility while minimizing environmental impact and preserving valuable resources in the manufacturing circuit. Pyrowave has successfully applied this nano-recycling technology to decontaminate polymers and supply purified, high-quality recycled plastics to critical industries, including food-contact compliance. The technology is low-carbon, electrified, and provides 100% traceable resins with properties identical to those of virgin resins. Additionally, the issue of low recycling rates and the limited market for traditionally hard-to-recycle plastic waste has fueled the need for new complementary alternatives. Chemical recycling, such as Pyrowave's microwave depolymerization, presents a sustainable and efficient solution by converting plastic waste into high-value commodities. By employing microwave catalytic depolymerization, Pyrowave enables a truly circular economy of plastics, particularly in treating polystyrene waste to produce virgin-like styrene monomers. This revolutionary approach boasts low energy consumption, high yields, and a reduced carbon footprint. Pyrowave offers a portfolio of sustainable, low-carbon, electric solutions to give plastic waste a second life and paves the way to the new circular economy of plastics. Here, particularly for polystyrene, we show that styrene monomer yields from Pyrowave’s polystyrene microwave depolymerization reactor is 2,2 to 1,5 times higher than that of the thermal conventional pyrolysis. In addition, we provide a detailed understanding of the microwave assisted depolymerization via analyzing the effects of microwave power, pyrolysis time, microwave receptor and temperature on the styrene product yields. Furthermore, we investigate life cycle environmental impact assessment of microwave assisted pyrolysis of polystyrene in commercial-scale production. Finally, it is worth pointing out that Pyrowave is able to treat several tons of polystyrene to produce virgin styrene monomers and manage waste/contaminated polymeric materials as well in a truly circular economy.

Keywords: nanorecycling, nanomaterials, plastic recycling, depolymerization

Procedia PDF Downloads 66
5 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 85
4 Navigating the Nexus of HIV/AIDS Care: Leveraging Statistical Insight to Transform Clinical Practice and Patient Outcomes

Authors: Nahashon Mwirigi

Abstract:

The management of HIV/AIDS is a global challenge, demanding precise tools to predict disease progression and guide tailored treatment. CD4 cell count dynamics, a crucial immune function indicator, play an essential role in understanding HIV/AIDS progression and enhancing patient care through effective modeling. While several models assess disease progression, existing methods often fall short in capturing the complex, non-linear nature of HIV/AIDS, especially across diverse demographics. A need exists for models that balance predictive accuracy with clinical applicability, enabling individualized care strategies based on patient-specific progression rates. This study utilizes patient data from Kenyatta National Hospital (2003–2014) to model HIV/AIDS progression across six CD4-defined states. The Exponential, 2-Parameter Weibull, and 3-Parameter Weibull models are employed to analyze failure rates and explore progression patterns by age and gender. Model selection is based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to identify models best representing disease progression variability across demographic groups. The 3-Parameter Weibull model emerges as the most effective, accurately capturing HIV/AIDS progression dynamics, particularly by incorporating delayed progression effects. This model reflects age and gender-specific variations, offering refined insights into patient trajectories and facilitating targeted interventions. One key finding is that older patients progress more slowly through CD4-defined stages, with a delayed onset of advanced stages. This suggests that older patients may benefit from extended monitoring intervals, allowing providers to optimize resources while maintaining consistent care. Recognizing slower progression in this demographic helps clinicians reduce unnecessary interventions, prioritizing care for faster-progressing groups. Gender-based analysis reveals that female patients exhibit more consistent progression, while male patients show greater variability. This highlights the need for gender-specific treatment approaches, as men may require more frequent assessments and adaptive treatment plans to address their variable progression. Tailoring treatment by gender can improve outcomes by addressing distinct risk patterns in each group. The model’s ability to account for both accelerated and delayed progression equips clinicians with a robust tool for estimating the duration of each disease stage. This supports individualized treatment planning, allowing clinicians to optimize antiretroviral therapy (ART) regimens based on demographic factors and expected disease trajectories. Aligning ART timing with specific progression patterns can enhance treatment efficacy and adherence. The model also has significant implications for healthcare systems, as its predictive accuracy enables proactive patient management, reducing the frequency of advanced-stage complications. For resource limited providers, this capability facilitates strategic intervention timing, ensuring that high-risk patients receive timely care while resources are allocated efficiently. Anticipating progression stages enhances both patient care and resource management, reinforcing the model’s value in supporting sustainable HIV/AIDS healthcare strategies. This study underscores the importance of models that capture the complexities of HIV/AIDS progression, offering insights to guide personalized, data-informed care. The 3-Parameter Weibull model’s ability to accurately reflect delayed progression and demographic risk variations presents a valuable tool for clinicians, supporting the development of targeted interventions and resource optimization in HIV/AIDS management.

Keywords: HIV/AIDS progression, 3-parameter Weibull model, CD4 cell count stages, antiretroviral therapy, demographic-specific modeling

Procedia PDF Downloads 14
3 Improvement in the Photocatalytic Activity of Nanostructured Manganese Ferrite – Type of Materials by Mechanochemical Activation

Authors: Katerina Zaharieva, Katya Milenova, Zara Cherkezova-Zheleva, Alexander Eliyas, Boris Kunev, Ivan Mitov

Abstract:

The synthesized nanosized manganese ferrite-type of samples have been tested as photocatalysts in the reaction of oxidative degradation of model contaminant Reactive Black 5 (RB5) dye in aqueous solutions under UV irradiation. As it is known this azo dye is applied in the textile-coloring industry and it is discharged into the waterways causing pollution. The co-precipitation procedure has been used for the synthesis of manganese ferrite-type of materials: Sample 1 - Mn0.25Fe2.75O4, Sample 2 - Mn0.5Fe2.5O4 and Sample 3 - MnFe2O4 from 0.03M aqueous solutions of MnCl2•4H2O, FeCl2•4H2O and/or FeCl3•6H2O and 0.3M NaOH in appropriate amounts. The mechanochemical activation of co-precipitated ferrite-type of samples has been performed in argon (Samples 1 and 2) or in air atmosphere (Sample 3) for 2 hours at a milling speed of 500 rpm. The mechano-chemical treatment has been carried out in a high energy planetary ball mill type PM 100, Retsch, Germany. The mass ratio between balls and powder was 30:1. As a result mechanochemically activated Sample 4 - Mn0.25Fe2.75O4, Sample 5 - Mn0.5Fe2.5O4 and Sample 6 - MnFe2O4 have been obtained. The synthesized manganese ferrite-type photocatalysts have been characterized by X-ray diffraction method and Moessbauer spectroscopy. The registered X-ray diffraction patterns and Moessbauer spectra of co-precipitated ferrite-type of materials show the presence of manganese ferrite and additional akaganeite phase. The presence of manganese ferrite and small amounts of iron phases is established in the mechanochemically treated samples. The calculated average crystallite size of manganese ferrites varies within the range 7 – 13 nm. This result is confirmed by Moessbauer study. The registered spectra show superparamagnetic behavior of the prepared materials at room temperature. The photocatalytic investigations have been made using polychromatic UV-A light lamp (Sylvania BLB, 18 W) illumination with wavelength maximum at 365 nm. The intensity of light irradiation upon the manganese ferrite-type photocatalysts was 0.66 mW.cm-2. The photocatalytic reaction of oxidative degradation of RB5 dye was carried out in a semi-batch slurry photocatalytic reactor with 0.15 g of ferrite-type powder, 150 ml of 20 ppm dye aqueous solution under magnetic stirring at rate 400 rpm and continuously feeding air flow. The samples achieved adsorption-desorption equilibrium in the dark period for 30 min and then the UV-light was turned on. After regular time intervals aliquot parts from the suspension were taken out and centrifuged to separate the powder from solution. The residual concentrations of dye were established by a UV-Vis absorbance single beam spectrophotometer CamSpec M501 (UK) measuring in the wavelength region from 190 to 800 nm. The photocatalytic measurements determined that the apparent pseudo-first-order rate constants calculated by linear slopes approximating to first order kinetic equation, increase in following order: Sample 3 (1.1х10-3 min-1) < Sample 1 (2.2х10-3 min-1) < Sample 2 (3.3 х10-3 min-1) < Sample 4 (3.8х10-3 min-1) < Sample 6 (11х10-3 min-1) < Sample 5 (15.2х10-3 min-1). The mechanochemically activated manganese ferrite-type of photocatalyst samples show significantly higher degree of oxidative degradation of RB5 dye after 120 minutes of UV light illumination in comparison with co-precipitated ferrite-type samples: Sample 5 (92%) > Sample 6 (91%) > Sample 4 (63%) > Sample 2 (53%) > Sample 1 (42%) > Sample 3 (15%). Summarizing the obtained results we conclude that the mechanochemical activation leads to a significant enhancement of the degree of oxidative degradation of the RB5 dye and photocatalytic activity of tested manganese ferrite-type of catalyst samples under our experimental conditions. The mechanochemically activated Mn0.5Fe2.5O4 ferrite-type of material displays the highest photocatalytic activity (15.2х10-3 min-1) and degree of oxidative degradation of the RB5 dye (92%) compared to the other synthesized samples. Especially a significant improvement in the degree of oxidative degradation of RB5 dye (91%) has been determined for mechanochemically treated MnFe2O4 ferrite-type of sample with the highest extent of substitution of iron ions by manganese ions than in the case of the co-precipitated MnFe2O4 sample (15%). The mechanochemically activated manganese ferrite-type of samples show good photocatalytic properties in the reaction of oxidative degradation of RB5 azo dye in aqueous solutions and it could find potential application for dye removal from wastewaters originating from textile industry.

Keywords: nanostructured manganese ferrite-type materials, photocatalytic activity, Reactive Black 5, water treatment

Procedia PDF Downloads 347
2 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 44
1 Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience

Authors: Krishna Raj Regmi

Abstract:

A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities.

Keywords: climate change adaptation, disaster risk management, soil-water management practices, sustainable agriculture

Procedia PDF Downloads 512