Search results for: Neeraj Vij
3 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load
Authors: Ahmad Saadiq, Neeraj Sahu
Abstract:
Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve
Procedia PDF Downloads 3252 Genetic Screening of Sahiwal Bulls for Higher Fertility
Authors: Atul C. Mahajan, A. K. Chakravarty, V. Jamuna, C. S. Patil, Neeraj Kashyap, Bharti Deshmukh, Vijay Kumar
Abstract:
The selection of Sahiwal bulls on the basis of dams best lactation milk yield under breeding programme in herd of the country neglecting fertility traits leads to deterioration in their performances and economy. The goal of this study was to explore polymorphism of CRISP2 gene and their association with semen traits (Post Thaw Motility, Hypo-osmotic Swelling Test, Acrosome Integrity, DNA Fragmentation and capacitation status), scrotal circumference, expected predicted difference (EPD) for milk yield and fertility. Sahiwal bulls included in present study were 60 bulls used in breeding programme as well as 50 young bulls yet to be included in breeding programme. All the Sahiwal bulls were found to be polymorphic for CRISP2 gene (AA, AG and GG) present within exon 7 to the position 589 of CRISP2 mRNA by using PCR-SSCP and Sequencing. Semen analysis were done on 60 breeding bulls frozen semen doses pertaining to four season (winter, summer, rainy and autumn). The scrotal circumference was measured from existing Sahiwal breeding bulls in the herd (n=47). The effect of non-genetic factors on reproduction traits were studied by least-squares technique and the significant difference of means between subclasses of season, period, parity and age group were tested. The data were adjusted for the significant non-genetic factors to remove the differential environmental effects. The adjusted data were used to generate traits like Waiting Period (WP), Pregnancy Rate (PR), Expected Predicted Difference (EPD) of fertility, respectively. Genetic and phenotypic parameters of reproduction traits were estimated. The overall least-squares means of Age at First Calving (AFC), Service Period (SP) and WP were estimated as 36.69 ± 0.18 months, 120.47 ± 8.98 days and 79.78 ± 3.09 days respectively. Season and period of birth had significant effect (p < 0.01) on AFC. AFC was highest during autumn season of birth followed by summer, winter and rainy. Season and period of calving had significant effect (p < 0.01) on SP and WP of sahiwal cows. The WP for Sahiwal cows was standardized based on four developed predicted model for pregnancy rate 42, 63, 84 and 105 days using all lactation records. The WP for Sahiwal cows were standardized as 42 days. A selection criterion was developed for Sahiwal breeding bulls and young Sahiwal bulls on the basis of EPD of fertility. The genotype has significant effect on expected predicted difference of fertility and some semen parameters like post thaw motility and HOST. AA Genotype of CRISP2 gene revealed better EPD for fertility than EPD of milk yield. AA genotype of CRISP2 gene has higher scrotal circumference than other genotype. For young Sahiwal bulls only AA genotypes were present with similar patterns. So on the basis of association of genotype with seminal traits, EPD of milk yield and EPD for fertility status, AA and AG genotype of CRISP2 gene was better for higher fertility in Sahiwal bulls.Keywords: expected predicted difference, fertility, sahiwal, waiting period
Procedia PDF Downloads 5841 Midterm Clinical and Functional Outcomes After Treatment with Ponseti Method for Idiopathic Clubfeet: A Prospective Cohort Study
Authors: Neeraj Vij, Amber Brennan, Jenni Winters, Hadi Salehi, Hamy Temkit, Emily Andrisevic, Mohan V. Belthur
Abstract:
Idiopathic clubfoot is a common lower extremity deformity with an incidence of 1:500. The Ponseti Method is well known as the gold standard of treatment. However, there is limited functional data demonstrating correction of the clubfoot after treatment with the Ponseti method. The purpose of this study was to study the clinical and functional outcomes after the Ponseti method with the Clubfoot Disease-Specific Instrument (CDS) and pedobarography. This IRB-approved prospective study included patients aged 3-18 who were treated for idiopathic clubfoot with the Ponseti method between January 2008 and December 2018. Age-matched controls were identified through siblings of clubfoot patients and other community members. Treatment details were collected through a chart review of the included patients. Laboratory assessment included a physical exam, gait analysis, and pedobarography. The Pediatric Outcomes Data Collection Instrument and the Clubfoot Disease-Specific Instrument were also obtained on clubfoot patients (CF). The Wilcoxson rank-sum test was used to study differences between the CF patients and the typically developing (TD) patients. Statistical significance was set at p < 0.05. There were a total of 37 enrolled patients in our study. 21 were priorly treated for CF and 16 were TD. 94% of the CF patients had bilateral involvement. The age at the start of treatment was 29 days, the average total number of casts was seven to eight, and the average total number of casts after Achilles tenotomy was one. The reoccurrence rate was 25%, tenotomy was required in 94% of patients, and ≥1 tenotomy was required in 25% of patients. There were no significant differences between step length, step width, stride length, force-time integral, maximum peak pressure, foot progression angles, stance phase time, single-limb support time, double limb support time, and gait cycle time between children treated with the Ponseti method and typically developing children. The average post-treatment Pirani and Dimeglio scores were 5.50±0.58 and 15.29±1.58, respectively. The average post-treatment PODCI subscores were: Upper Extremity: 90.28, Transfers: 94.6, Sports: 86.81, Pain: 86.20, Happiness: 89.52, Global: 88.6. The average post-treatment Clubfoot Disease-Specific Instrument scores subscores were: Satisfaction: 73.93, Function: 80.32, Overall: 78.41. The Ponseti Method has a very high success rate and remains to be the gold standard in the treatment of idiopathic clubfoot. Timely management leads to good outcomes and a low need for repeated Achilles tenotomy. Children treated with the Ponseti method demonstrate good functional outcomes as measured through pedobarography. Pedobarography may have clinical utility in studying congenital foot deformities. Objective measures for hours of brace wear could represent an improvement in clubfoot care.Keywords: functional outcomes, pediatric deformity, patient-reported outcomes, talipes equinovarus
Procedia PDF Downloads 78