Search results for: Mathieu Salzmann
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: Mathieu Salzmann

3 Tool Development for Assessing Antineoplastic Drugs Surface Contamination in Healthcare Services and Other Workplaces

Authors: Benoit Atge, Alice Dhersin, Oscar Da Silva Cacao, Beatrice Martinez, Dominique Ducint, Catherine Verdun-Esquer, Isabelle Baldi, Mathieu Molimard, Antoine Villa, Mireille Canal-Raffin

Abstract:

Introduction: Healthcare workers' exposure to antineoplastic drugs (AD) is a burning issue for occupational medicine practitioners. Biological monitoring of occupational exposure (BMOE) is an essential tool for assessing AD contamination of healthcare workers. In addition to BMOE, surface sampling is a useful tool in order to understand how workers get contaminated, to identify sources of environmental contamination, to verify the effectiveness of surface decontamination way and to ensure monitoring of these surfaces. The objective of this work was to develop a complete tool including a kit for surface sampling and a quantification analytical method for AD traces detection. The development was realized with the three following criteria: the kit capacity to sample in every professional environment (healthcare services, veterinaries, etc.), the detection of very low AD traces with a validated analytical method and the easiness of the sampling kit use regardless of the person in charge of sampling. Material and method: AD mostly used in term of quantity and frequency have been identified by an analysis of the literature and consumptions of different hospitals, veterinary services, and home care settings. The kind of adsorbent device, surface moistening solution and mix of solvents for the extraction of AD from the adsorbent device have been tested for a maximal yield. The AD quantification was achieved by an ultra high-performance liquid chromatography method coupled with tandem mass spectrometry (UHPLC-MS/MS). Results: With their high frequencies of use and their good reflect of the diverse activities through healthcare, 15 AD (cyclophosphamide, ifosfamide, doxorubicin, daunorubicin, epirubicin, 5-FU, dacarbazin, etoposide, pemetrexed, vincristine, cytarabine, methothrexate, paclitaxel, gemcitabine, mitomycin C) were selected. The analytical method was optimized and adapted to obtain high sensitivity with very low limits of quantification (25 to 5000ng/mL), equivalent or lowest that those previously published (for 13/15 AD). The sampling kit is easy to use, provided with a didactic support (online video and protocol paper). It showed its effectiveness without inter-individual variation (n=5/person; n= 5 persons; p=0,85; ANOVA) regardless of the person in charge of sampling. Conclusion: This validated tool (sampling kit + analytical method) is very sensitive, easy to use and very didactic in order to control the chemical risk brought by AD. Moreover, BMOE permits a focal prevention. Used in routine, this tool is available for every intervention of occupational health.

Keywords: surface contamination, sampling kit, analytical method, sensitivity

Procedia PDF Downloads 132
2 Review of Published Articles on Climate Change and Health in Two Francophone Newspapers: 1990-2015

Authors: Mathieu Hemono, Sophie Puig-Malet, Patrick Zylberman, Avner Bar-Hen, Rainer Sauerborn, Stefanie Schütte, Niamh Herlihi, Antoine Flahault et Anneliese Depoux

Abstract:

Since the IPCC released its first report in 1990, an increasing number of peer-reviewed publications have reported the health risks associated with climate change. Although there is a large body of evidence supporting the association between climate change and poor health outcomes, the media is inconsistent in the attention it pays to the subject matter. This study aims to analyze the modalities and rhetoric in the media concerning the impact of climate change on health in order to better understand its role in information dissemination. A review was conducted of articles published between 1990 and 2015 in the francophone newspapers Le Monde and Jeune Afrique. A detailed search strategy including specific climate and health terminology was used to search the newspapers’ online databases. 1202 articles were identified as having referenced the terms climate change and health. Inclusion and exclusion criteria were applied to narrow the search to articles referencing the effects of climate change on human health and 160 articles were included in the final analysis. Data was extracted and categorized to create a structured database allowing for further investigation and analysis. The review indicated that although 66% of the selected newspaper articles reference scientific evidence of the impact of climate change on human health, the focus on the topic is limited major political events or is circumstances relating to public health crises. Main findings also include that among the many direct and indirect health outcomes, infectious diseases are the main health outcome highlighted in association with climate change. Lastly, the articles suggest that while developed countries have caused most of the greenhouse effect, the global south is more immediately affected. Overall, the reviewed articles reinforce the need for international cooperation in finding a solution to mitigate the effects of climate change on health. The manner in which scientific results are communicated and disseminated, impact individual and collective perceptions of the topic in the public sphere and affect political will to shape policy. The results of this analysis will underline the modalities of the rhetoric of transparency and provide the basis for a perception study of media discourses. This study is part of an interdisciplinary project called 4CHealth that confronts results of the research done on scientific, political and press literature to better understand how the knowledge on climate changes and health circulates within those different fields and whether and how it is translated to real world change.

Keywords: climate change, health, health impacts, communication, media, rhetoric, awareness, Global South, Africa

Procedia PDF Downloads 423
1 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 123