Search results for: Victor Kang
4 Baseline Data for Insecticide Resistance Monitoring in Tobacco Caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) on Cole Crops
Authors: Prabhjot Kaur, B.K. Kang, Balwinder Singh
Abstract:
The tobacco caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is an agricultural important pest species. S. litura has a wide host range of approximately recorded 150 plant species worldwide. In Punjab, this pest attains sporadic status primarily on cauliflower, Brassica oleracea (L.). This pest destroys vegetable crop and particularly prefers the cruciferae family. However, it is also observed feeding on other crops such as arbi, Colocasia esculenta (L.), mung bean, Vigna radiata (L.), sunflower, Helianthus annuus (L.), cotton, Gossypium hirsutum (L.), castor, Ricinus communis (L.), etc. Larvae of this pest completely devour the leaves of infested plant resulting in huge crop losses which ranges from 50 to 70 per cent. Indiscriminate and continuous use of insecticides has contributed in development of insecticide resistance in insects and caused the environmental degradation as well. Moreover, a base line data regarding the toxicity of the newer insecticides would help in understanding the level of resistance developed in this pest and any possible cross-resistance there in, which could be assessed in advance. Therefore, present studies on development of resistance in S. litura against four new chemistry insecticides (emamectin benzoate, chlorantraniliprole, indoxacarb and spinosad) were carried out in the Toxicology laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India during the year 2011-12. Various stages of S. litura (eggs, larvae) were collected from four different locations (Malerkotla, Hoshiarpur, Amritsar and Samrala) of Punjab. Resistance is developed in third instars of lepidopterous pests. Therefore, larval bioassays were conducted to estimate the response of field populations of thirty third-instar larvae of S. litura under laboratory conditions at 25±2°C and 65±5 per cent relative humidity. Leaf dip bioassay technique with diluted insecticide formulations recommended by Insecticide Resistance Action Committee (IRAC) was performed in the laboratory with seven to ten treatments depending on the insecticide class, respectively. LC50 values were estimated by probit analysis after correction to record control mortality data which was used to calculate the resistance ratios (RR). The LC50 values worked out for emamectin benzoate, chlorantraniliprole, indoxacarb, spinosad are 0.081, 0.088, 0.380, 4.00 parts per million (ppm) against pest populations collected from Malerkotla; 0.051, 0.060, 0.250, 3.00 (ppm) of Amritsar; 0.002, 0.001, 0.0076, 0.10 ppm for Samrala and 0.000014, 0.00001, 0.00056, 0.003 ppm against pest population of Hoshiarpur, respectively. The LC50 values for populations collected from these four locations were in the order Malerkotla>Amritsar>Samrala>Hoshiarpur for the insecticides (emamectin benzoate, chlorantraniliprole, indoxacarb and spinosad) tested. Based on LC50 values obtained, emamectin benzoate (0.000014 ppm) was found to be the most toxic among all the tested populations, followed by chlorantraniliprole (0.00001 ppm), indoxacarb (0.00056 ppm) and spinosad (0.003 ppm), respectively. The pairwise correlation coefficients of LC50 values indicated that there was lack of cross resistance for emamectin benzoate, chlorantraniliprole, spinosad, indoxacarb in populations of S. litura from Punjab. These insecticides may prove to be promising substitutes for the effective control of insecticide resistant populations of S. litura in Punjab state, India.Keywords: Spodoptera litura, insecticides, toxicity, resistance
Procedia PDF Downloads 3423 Effects and Mechanisms of an Online Short-Term Audio-Based Mindfulness Intervention on Wellbeing in Community Settings and How Stress and Negative Affect Influence the Therapy Effects: Parallel Process Latent Growth Curve Modeling of a Randomized Control
Authors: Man Ying Kang, Joshua Kin Man Nan
Abstract:
The prolonged pandemic has posed alarming public health challenges to various parts of the world, and face-to-face mental health treatment is largely discounted for the control of virus transmission, online psychological services and self-help mental health kits have become essential. Online self-help mindfulness-based interventions have proved their effects on fostering mental health for different populations over the globe. This paper was to test the effectiveness of an online short-term audio-based mindfulness (SAM) program in enhancing wellbeing, dispositional mindfulness, and reducing stress and negative affect in community settings in China, and to explore possible mechanisms of how dispositional mindfulness, stress, and negative affect influenced the intervention effects on wellbeing. Community-dwelling adults were recruited via online social networking sites (e.g., QQ, WeChat, and Weibo). Participants (n=100) were randomized into the mindfulness group (n=50) and a waitlist control group (n=50). In the mindfulness group, participants were advised to spend 10–20 minutes listening to the audio content, including mindful-form practices (e.g., eating, sitting, walking, or breathing). Then practice daily mindfulness exercises for 3 weeks (a total of 21 sessions), whereas those in the control group received the same intervention after data collection in the mindfulness group. Participants in the mindfulness group needed to fill in the World Health Organization Five Well-Being Index (WHO), Positive and Negative Affect Schedule (PANAS), Perceived Stress Scale (PSS), and Freiburg Mindfulness Inventory (FMI) four times: at baseline (T0) and at 1 (T1), 2 (T2), and 3 (T3) weeks while those in the waitlist control group only needed to fill in the same scales at pre- and post-interventions. Repeated-measure analysis of variance, paired sample t-test, and independent sample t-test was used to analyze the variable outcomes of the two groups. The parallel process latent growth curve modeling analysis was used to explore the longitudinal moderated mediation effects. The dependent variable was WHO slope from T0 to T3, the independent variable was Group (1=SAM, 2=Control), the mediator was FMI slope from T0 to T3, and the moderator was T0NA and T0PSS separately. The different levels of moderator effects on WHO slope was explored, including low T0NA or T0PSS (Mean-SD), medium T0NA or T0PSS (Mean), and high T0NA or T0PSS (Mean+SD). The results found that SAM significantly improved and predicted higher levels of WHO slope and FMI slope, as well as significantly reduced NA and PSS. FMI slope positively predict WHO slope. FMI slope partially mediated the relationship between SAM and WHO slope. Baseline NA and PSS as the moderators were found to be significant between SAM and WHO slope and between SAM and FMI slope, respectively. The conclusion was that SAM was effective in promoting levels of mental wellbeing, positive affect, and dispositional mindfulness as well as reducing negative affect and stress in community settings in China. SAM improved wellbeing faster through the faster enhancement of dispositional mindfulness. Participants with medium-to-high negative affect and stress buffered the therapy effects of SAM on wellbeing improvement speed.Keywords: mindfulness, negative affect, stress, wellbeing, randomized control trial
Procedia PDF Downloads 1092 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases
Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo
Abstract:
The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis
Procedia PDF Downloads 2221 Multiphysic Coupling Between Hypersonc Reactive Flow and Thermal Structural Analysis with Ablation for TPS of Space Lunchers
Authors: Margarita Dufresne
Abstract:
This study devoted to development TPS for small space re-usable launchers. We have used SIRIUS design for S1 prototype. Multiphysics coupling for hypersonic reactive flow and thermos-structural analysis with and without ablation is provided by -CCM+ and COMSOL Multiphysics and FASTRAN and ACE+. Flow around hypersonic flight vehicles is the interaction of multiple shocks and the interaction of shocks with boundary layers. These interactions can have a very strong impact on the aeroheating experienced by the flight vehicle. A real gas implies the existence of a gas in equilibrium, non-equilibrium. Mach number ranged from 5 to 10 for first stage flight.The goals of this effort are to provide validation of the iterative coupling of hypersonic physics models in STAR-CCM+ and FASTRAN with COMSOL Multiphysics and ACE+. COMSOL Multiphysics and ACE+ are used for thermal structure analysis to simulate Conjugate Heat Transfer, with Conduction, Free Convection and Radiation to simulate Heat Flux from hypersonic flow. The reactive simulations involve an air chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination probabilities calculation include in the Dunn/Kang mechanism. Forward reaction rate coefficients based on a modified Arrhenius equation are computed for each reaction. The algorithms employed to solve the reactive equations used the second-order numerical scheme is obtained by a “MUSCL” (Monotone Upstream-cantered Schemes for Conservation Laws) extrapolation process in the structured case. Coupled inviscid flux: AUSM+ flux-vector splitting The MUSCL third-order scheme in STAR-CCM+ provides third-order spatial accuracy, except in the vicinity of strong shocks, where, due to limiting, the spatial accuracy is reduced to second-order and provides improved (i.e., reduced) dissipation compared to the second-order discretization scheme. initial unstructured mesh is refined made using this initial pressure gradient technique for the shock/shock interaction test case. The suggested by NASA turbulence models are the K-Omega SST with a1 = 0.355 and QCR (quadratic) as the constitutive option. Specified k and omega explicitly in initial conditions and in regions – k = 1E-6 *Uinf^2 and omega = 5*Uinf/ (mean aerodynamic chord or characteristic length). We put into practice modelling tips for hypersonic flow as automatic coupled solver, adaptative mesh refinement to capture and refine shock front, using advancing Layer Mesher and larger prism layer thickness to capture shock front on blunt surfaces. The temperature range from 300K to 30 000 K and pressure between 1e-4 and 100 atm. FASTRAN and ACE+ are coupled to provide high-fidelity solution for hot hypersonic reactive flow and Conjugate Heat Transfer. The results of both approaches meet the CIRCA wind tunnel results.Keywords: hypersonic, first stage, high speed compressible flow, shock wave, aerodynamic heating, conugate heat transfer, conduction, free convection, radiation, fastran, ace+, comsol multiphysics, star-ccm+, thermal protection system (tps), space launcher, wind tunnel
Procedia PDF Downloads 71