Search results for: Fatma Mahmoud Abdelhafiz
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 487

Search results for: Fatma Mahmoud Abdelhafiz

7 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling

Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather

Abstract:

New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.

Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling

Procedia PDF Downloads 191
6 Immersive and Non-Immersive Virtual Reality Applied to the Cervical Spine Assessment

Authors: Pawel Kiper, Alfonc Baba, Mahmoud Alhelou, Giorgia Pregnolato, Michela Agostini, Andrea Turolla

Abstract:

Impairment of cervical spine mobility is often related to pain triggered by musculoskeletal disorders or direct traumatic injuries of the spine. To date, these disorders are assessed with goniometers and inclinometers, which are the most popular devices used in clinical settings. Nevertheless, these technologies usually allow measurement of no more than two-dimensional range of motion (ROM) quotes in static conditions. Conversely, the wide use of motion tracking systems able to measure 3 to 6 degrees of freedom dynamically, while performing standard ROM assessment, are limited due to technical complexities in preparing the setup and high costs. Thus, motion tracking systems are primarily used in research. These systems are an integral part of virtual reality (VR) technologies, which can be used for measuring spine mobility. To our knowledge, the accuracy of VR measure has not yet been studied within virtual environments. Thus, the aim of this study was to test the reliability of a protocol for the assessment of sensorimotor function of the cervical spine in a population of healthy subjects and to compare whether using immersive or non-immersive VR for visualization affects the performance. Both VR assessments consisted of the same five exercises and random sequence determined which of the environments (i.e. immersive or non-immersive) was used as first assessment. Subjects were asked to perform head rotation (right and left), flexion, extension and lateral flexion (right and left side bending). Each movement was executed five times. Moreover, the participants were invited to perform head reaching movements i.e. head movements toward 8 targets placed along a circular perimeter each 45°, visualized one-by-one in random order. Finally, head repositioning movement was obtained by head movement toward the same 8 targets as for reaching and following reposition to the start point. Thus, each participant performed 46 tasks during assessment. Main measures were: ROM of rotation, flexion, extension, lateral flexion and complete kinematics of the cervical spine (i.e. number of completed targets, time of execution (seconds), spatial length (cm), angle distance (°), jerk). Thirty-five healthy participants (i.e. 14 males and 21 females, mean age 28.4±6.47) were recruited for the cervical spine assessment with immersive and non-immersive VR environments. Comparison analysis demonstrated that: head right rotation (p=0.027), extension (p=0.047), flexion (p=0.000), time (p=0.001), spatial length (p=0.004), jerk target (p=0.032), trajectory repositioning (p=0.003), and jerk target repositioning (p=0.007) were significantly better in immersive than non-immersive VR. A regression model showed that assessment in immersive VR was influenced by height, trajectory repositioning (p<0.05), and handedness (p<0.05), whereas in non-immersive VR performance was influenced by height, jerk target (p=0.002), head extension, jerk target repositioning (p=0.002), and by age, head flex/ext, trajectory repositioning, and weight (p=0.040). The results of this study showed higher accuracy of cervical spine assessment when executed in immersive VR. The assessment of ROM and kinematics of the cervical spine can be affected by independent and dependent variables in both immersive and non-immersive VR settings.

Keywords: virtual reality, cervical spine, motion analysis, range of motion, measurement validity

Procedia PDF Downloads 166
5 Multicenter Evaluation of the ACCESS Anti-HCV Assay on the DxI 9000 ACCESS Immunoassay Analyzer, for the Detection of Hepatitis C Virus Antibody

Authors: Dan W. Rhodes, Juliane Hey, Magali Karagueuzian, Florianne Martinez, Yael Sandowski, Vanessa Roulet, Mahmoud Badawi, Mohammed-Amine Chakir, Valérie Simon, Jérémie Gautier, Françoise Le Boulaire, Catherine Coignard, Claire Vincent, Sandrine Greaume, Isabelle Voisin

Abstract:

Background: Beckman Coulter, Inc. (BEC) has recently developed a fully automated second-generation anti-HCV test on a new immunoassay platform. The objective of this multicenter study conducted in Europe was to evaluate the performance of the ACCESS anti-HCV assay on the recently CE-marked DxI 9000 ACCESS Immunoassay Analyzer as an aid in the diagnosis of HCV (Hepatitis C Virus) infection and as a screening test for blood and plasma donors. Methods: The clinical specificity of the ACCESS anti-HCV assay was determined using HCV antibody-negative samples from blood donors and hospitalized patients. Sample antibody status was determined by a CE-marked anti-HCV assay (Abbott ARCHITECTTM anti-HCV assay or Abbott PRISM HCV assay) with an additional confirmation method (Immunoblot testing with INNO-LIATM HCV Score - Fujirebio), if necessary, according to pre-determined testing algorithms. The clinical sensitivity was determined using known HCV antibody-positive samples, identified positive by Immunoblot testing with INNO-LIATM HCV Score - Fujirebio. HCV RNA PCR or genotyping was available on all Immunoblot positive samples for further characterization. The false initial reactive rate was determined on fresh samples from blood donors and hospitalized patients. Thirty (30) commercially available seroconversion panels were tested to assess the sensitivity for early detection of HCV infection. The study was conducted from November 2019 to March 2022. Three (3) external sites and one (1) internal site participated. Results: Clinical specificity (95% CI) was 99.7% (99.6 – 99.8%) on 5852 blood donors and 99.0% (98.4 – 99.4%) on 1527 hospitalized patient samples. There were 15 discrepant samples (positive on ACCESS anti-HCV assay and negative on both ARCHITECT and Immunoblot) observed with hospitalized patient samples, and of note, additional HCV RNA PCR results showed five (5) samples had positive HCV RNA PCR results despite the absence of HCV antibody detection by ARCHITECT and Immunoblot, suggesting a better sensitivity of the ACCESS anti-HCV assay with these five samples compared to the ARCHITECT and Immunoblot anti-HCV assays. Clinical sensitivity (95% CI) on 510 well-characterized, known HCV antibody-positive samples was 100.0% (99.3 – 100.0%), including 353 samples with known HCV genotypes (1 to 6). The overall false initial reactive rate (95% CI) on 6630 patient samples was 0.02% (0.00 – 0.09%). Results obtained on 30 seroconversion panels demonstrated that the ACCESS anti-HCV assay had equivalent sensitivity performances, with an average bleed difference since the first reactive bleed below one (1), compared to the ARCHITECTTM anti-HCV assay. Conclusion: The newly developed ACCESS anti-HCV assay from BEC for use on the DxI 9000 ACCESS Immunoassay Analyzer demonstrated high clinical sensitivity and specificity, equivalent to currently marketed anti-HCV assays, as well as a low false initial reactive rate.

Keywords: DxI 9000 ACCESS Immunoassay Analyzer, HCV, HCV antibody, Hepatitis C virus, immunoassay

Procedia PDF Downloads 100
4 Chemical Composition and Insecticidal Activity of Three Essential Oil and Beauvericin Nanogel on Plodia Interpunctella (Lepidoptera: Pyralidae)

Authors: Magda Mahmoud Amin Sabbour, El-Sayed H. Shaurub

Abstract:

The Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), of stored grain pests which destroy the seed completely. Their larval stages feed on the nutrient germinating kernels part found in the seeds grain. This leads to a reduction causing a badness to seed germination and seed viability. It controlled by many insecticides which pollute and cusses a harmful diseases to human being. Three tested oils were evaluated on this target pests. Plant extracts, essential oils and medical oils are materials which used to control many stored pests. Plant oils extracts have a lower effects on parasites and predators and not pollute the medium. By using the apparatus gas chromatography flame ionization detector gas chromatography–analysis of three essential oil tested. This research was point to explore and appreciation the activity of three oils and nano gel Beauvericin against P. interpunctella in the laboratory conditions and in the store conditions. The three essential oil tested proved that, percentage of α-Pinene recoded 7.76, 7.72 and 6.66 for C. cyminum, A. squamosal and G. officinale respectively. The composition of the β-Pinene recoded 4.61, 8.92 and 30.63 for the corresponding oils tested. Results showed that after analytically the oils tested, the effective compound of C. cyminum oil are p-cyinene and Terpinene. Results obtained show that the LC50 recorded 125, 112, 55 and 20 ppm after P. interpunctella treated with medical oils of Guaiacum officinale, Annona squamosa, Cuminum cyminum and Beauvericin 3% respectively. The accumulative mortality of P. interpunctella after treated with A.squamosa oil-loaded nanogels which showed that it is the highest oils from infestations recoded when the seed treated with 3% after 48 days, the accumulations obtained 44% at followed by 24 after24 days of storage. Results, cleared that the seed protection by G. officinale recorded 40% at concentrations of 3% after 48 days of storage seeds. C. cyminum was the highest mortality by 98, at concentrations 3%. The highest seed protection proved after C. cyminum oil-loaded nanogels 14% followed by G. officinale 29% and A.squamosa 44%.when the seeds treated with Beauvericin 3%. Results of this work cleared that the essential medical oils have a useful action effect on target insects. Plant essential and medical oils, their active ingredient have potentially high bioactivity against on P. interpunctella. The medical and essential oils incorporation and usage the nano-formulation release stopped the highly degradation vaporization and the increasing in the constancy, and save the lower effectiveness of the dosage/application. The research results proved that the highest seed protection obtained after C. cyminum oil-loaded nanogels followed by G. officinale and A.squamosa. It could be complemented that P. interpunctella were more susceptible to medical oils loaded nanogel (MOLNs ) than medical oils only (MO). MOLNs had best lower amount of the residual activity than MO only. MOLNs might mend the insecticidal action of the medical oil tested by the slow effective release of the medical oils to control P. interpunctella mostly at the lower doses.

Keywords: Cuminum cyminum, annona squamosa, guaiacum officinale, beauvericin 3 %, plodia interpunctella

Procedia PDF Downloads 120
3 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data

Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora

Abstract:

Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.

Keywords: drilling optimization, geological formations, machine learning, rate of penetration

Procedia PDF Downloads 131
2 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 229
1 Criminal Attitude vs Transparency in the Arab World

Authors: Keroles Akram Saed Ghatas

Abstract:

The political violence that characterized 1992 continued into 1993, creating a major security crisis for President Hosni Mubarak's government as the death toll and human rights abuses soared. Increasingly sensitive to criticism of 's human rights activities, the government established human rights departments in key ministries, beginning with the Foreign Office in February. Similar offices have been set up in the Justice and Agriculture Ministries, and plans to set up an office in the Home Office have been announced. It turned out that the main task of the law unit was to overturn the conclusions of international human rights organizations.President Mubarak was elected in a national referendum on October 4 for a third six-year term after being appointed on July 21 by the People's Assembly, an elected parliament overwhelmingly dominated by the in-power National Democratic Party will Mr. Mubarak ran unhindered. The Interior Ministry announced that nearly 16 million people cast their votes (84% of eligible voters), of which 96.28%. voted for presidential re-election.In 1993, armed Islamic extremists escalated their attacks on Christian citizens, government officials, police officers and senior security officials, resulting in casualties among the intended victims and bystanders. Sporadic attacks on buses, boats and tourist attractions also occurred throughout the year. From March 1992 to October 28, 1993, a total of 222 people lost their lives in the riots: 36 Coptic Christians and 38 other citizens; If one is a foreigner; sixty-six members of the Security Forces; and seventy-six known or suspected activists who were killed while resisting arrest. The latter was killed in airstrikes and firefights with security forces and at the site of planned attacks. On March 9-10, a series of airstrikes in Cairo, Giza, Qalyubiya province north of the capital and Aswan killed fifteen suspected militants and five members of the security forces.One of the airstrikes in Giza, part of Greater Cairo, killed the wife and son of Khalifa Mahmoud Ramadan, a suspected militant who was himself killed. The government agency Middle East News Agency reported on March 10 that the raids were part of a "broad confrontational plan aimed at ofterrorist elements"The state of emergency declared in October 1981 after the assassination of President Anwar el-Sadat was still in force in Egypt. The law, previously in effect continuously from June 1967 to May 1980, continued to grant the executive branch unique legal powers that effectively overrode the human rights guarantees of the Egyptian constitution. These provisions included wide discretionary powers in arresting and detaining individuals, as well as the ability to try civilians in military courts. The Cairo-based Independent Organization for Human Rights said so in a document sent to the United Nations in July 1993The human rights committee said the continued imposition of the state of emergency had resulted in "another constitution for the country" and "led to widespread misconduct by the security apparatus".

Keywords: constitution, human rights, legal power, president, anwar, el-sadat, assassination, state of emergency, middle east, news, agency, confrontational, arresting, fugitive, leaders, terrorist, elements, armed islamic extremists.

Procedia PDF Downloads 44