Search results for: rabbit meat
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 454

Search results for: rabbit meat

4 Integrating Animal Nutrition into Veterinary Science: Enhancing Health, Productivity, and Sustainability through Advanced Nutritional Strategies and Collaborative Approaches

Authors: Namiiro Shirat Umar

Abstract:

The science of animals and veterinary medicine is a multidisciplinary field dedicated to understanding, managing, and enhancing the health and welfare of animals. This field encompasses a broad spectrum of disciplines, including animal physiology, genetics, nutrition, behavior, and pathology, as well as preventive and therapeutic veterinary care. Veterinary science focuses on diagnosing, treating, and preventing diseases in animals, ensuring their health and well-being. It involves the study of various animal species, from companion animals and livestock to wildlife and exotic species. Through advanced diagnostic techniques, medical treatments, and surgical procedures, veterinarians address a wide range of health issues, from infectious diseases and injuries to chronic conditions and reproductive health. Animal science complements veterinary medicine by providing a deeper understanding of animal biology and behavior, which is essential for effective health management. It includes research on animal breeding, nutrition, and husbandry practices aimed at improving animal productivity and welfare. Incorporating modern technologies and methodologies, such as genomics, bioinformatics, and precision farming, the science of animals and veterinary medicine continually evolves to address emerging challenges. This integrated approach ensures the development of sustainable practices, enhances animal welfare and contributes to public health by monitoring zoonotic diseases and ensuring the safety of animal products. Animal nutrition is a cornerstone of animal and veterinary science, focusing on the dietary needs of animals to promote health, growth, reproduction, and overall well-being. Proper nutrition ensures that animals receive essential nutrients, including macronutrients (carbohydrates, proteins, fats) and micronutrients (vitamins, minerals), tailored to their specific species, life stages, and physiological conditions. By emphasizing a balanced diet, animal nutrition serves as a preventive measure against diseases and enhances recovery from illnesses, reducing the need for pharmaceutical interventions. It addresses key health issues such as metabolic disorders, reproductive inefficiencies, and immune system deficiencies. Moreover, optimized nutrition improves the quality of animal products like meat, milk, and eggs and enhances the sustainability of animal farming by improving feed efficiency and reducing environmental waste. The integration of animal nutrition into veterinary practice necessitates a collaborative approach involving veterinarians, animal nutritionists, and farmers. Advances in nutritional science, such as precision feeding and the use of nutraceuticals, provide innovative solutions to traditional veterinary challenges. Overall, the focus on animal nutrition as a primary aspect of veterinary care leads to more holistic, sustainable, and effective animal health management practices, promoting the welfare and productivity of animals in various settings. This abstract is a trifold in nature as it traverses how education can put more emphasis on animal nutrition as an alternative for improving animal health as an important issue espoused under the discipline of animal and veterinary science; therefore, brief aspects of this paper and they are as follows; animal nutrition, veterinary science and animals.

Keywords: animal nutrition as a way to enhance growth, animal science as a study, veterinary science dealing with health of the animals, animals healthcare dealing with proper sanitation

Procedia PDF Downloads 28
3 Antibacterial Nanofibrous Film Encapsulated with 4-terpineol/β-cyclodextrin Inclusion Complexes: Relative Humidity-Triggered Release and Shrimp Preservation Application

Authors: Chuanxiang Cheng, Tiantian Min, Jin Yue

Abstract:

Antimicrobial active packaging enables extensive biological effects to improve food safety. However, the efficacy of antimicrobial packaging hinges on factors including the diffusion rate of the active agent toward the food surface, the initial content in the antimicrobial agent, and the targeted food shelf life. Among the possibilities of antimicrobial packaging design, an interesting approach involves the incorporation of volatile antimicrobial agents into the packaging material. In this case, the necessity for direct contact between the active packaging material and the food surface is mitigated, as the antimicrobial agent exerts its action through the packaging headspace atmosphere towards the food surface. However, it still remains difficult to achieve controlled and precise release of bioactive compounds to the specific target location with required quantity in food packaging applications. Remarkably, the development of stimuli-responsive materials for electrospinning has introduced the possibility of achieving controlled release of active agents under specific conditions, thereby yielding enduring biological effects. Relative humidity (RH) for the storage of food categories such as meat and aquatic products typically exceeds 90%. Consequently, high RH can be used as an abiotic trigger for the release of active agents to prevent microbial growth. Hence, a novel RH - responsive polyvinyl alcohol/chitosan (PVA/CS) composite nanofibrous film incorporated with 4-terpineol/β-cyclodextrin inclusion complexes (4-TA@β-CD ICs) was engineered by electrospinning that can be deposited as a functional packaging materials. The characterization results showed the thermal stability of the films was enhanced after the incorporation due to the hydrogen bonds between ICs and polymers. Remarkably, the 4 wt% 4-TA@β-CD ICs/PVA/CS film exhibited enhanced crystallinity, moderate hydrophilic (Water contact angle of 81.53°), light barrier property (Transparency of 1.96%) and water resistance (Water vapor permeability of 3.17 g mm/m2 h kPa). Moreover, this film also showed optimized mechanical performance with a Young’s modulus of 11.33 MPa, a tensile strength of 19.99 MPa and an elongation at break of 4.44 %. Notably, the antioxidant and antibacterial properties of this packaging material were significantly improved. The film demonstrated the half-inhibitory concentrations (IC50) values of 87.74% and 85.11% for scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic) (ABTS) free radicals, respectively, in addition to an inhibition efficiency of 65% against Shewanella putrefaciens, the characteristic bacteria in aquatic products. Most importantly, the film achieved controlled release of 4-TA under high 98% RH by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. Consequently, low relative humidity is suitable for the preservation of nanofibrous film, while high humidity conditions typical in fresh food packaging environments effectively stimulated the release of active compounds in the film. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. This attractive design could pave the way for the development of new food packaging materials.

Keywords: controlled release, electrospinning, nanofibrous film, relative humidity–responsive, shrimp preservation

Procedia PDF Downloads 68
2 Research Cooperation between of Ukraine in Terms of Food Chain Safety Control in the Frame of MICRORISK Project

Authors: Kinga Wieczorek, Elzbieta Kukier, Remigiusz Pomykala, Beata Lachtara, Renata Szewczyk, Krzysztof Kwiatek, Jacek Osek

Abstract:

The MICRORISK project (Research cooperation in assessment of microbiological hazard and risk in the food chain) was funded by the European Commission under the FP7 PEOPLE 2012 IRSES call within the International Research Staff Exchange Scheme of Marie Curie Action and realized during years from 2014 to 2015. The main aim of the project was to establish a cooperation between the European Union (EU) and the third State in the area important from the public health point of view. The following organizations have been engaged in the activity: National Veterinary Research Institute (NVRI) in Pulawy, Poland (coordinator), French Agency for Food, Environmental and Occupational Health & Safety (ANSES) in Maisons Alfort, France, National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkov and State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE) Kijev Ukraine. The results of the project showed that Ukraine used microbiological criteria in accordance with Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Compliance concerns both the criteria applicable at the stage of food safety (retail trade), as well as evaluation criteria and process hygiene in food production. In this case, the Ukrainian legislation also provides application of the criteria that do not have counterparts in the food law of the European Union, and are based on the provisions of Ukrainian law. Partial coherence of the Ukrainian and EU legal requirements in terms of microbiological criteria for food and feed concerns microbiological parameters such as total plate count, coliforms, coagulase-positive Staphylococcus spp., including S. aureus. Analysis of laboratory methods used for microbiological hazards control in food production chain has shown that most methods used in the EU are well-known by Ukrainian partners, and many of them are routinely applied as the only standards in the laboratory practice or simultaneously used with Ukrainian methods. The area without any legislation, where the EU regulation and analytical methods should be implemented is the area of Shiga toxin producing E. coli, including E. coli O157 and staphylococcal enterotoxin detection. During the project, the analysis of the existing Ukrainian and EU data concerning the prevalence of the most important food-borne pathogens on different stages of food production chain was performed. Particularly, prevalence of Salmonella spp., Campylobacter spp., L. monocytogenes as well as clostridia was examined. The analysis showed that poultry meat still appears to be the most important food-borne source of Campylobacter and Salmonella in the UE. On the other hand, L. monocytogenes were seldom detected above the legal safety limit (100 cfu/g) among the EU countries. Moreover, the analysis revealed the lack of comprehensive data regarding the prevalence of the most important food-borne pathogens in Ukraine. The results of the MICRORISK project are networking activities among researches originations participating in the tasks will help with a better recognition of each other regarding very important, from the public health point of view areas such as microbiological hazards in the food production chain and finally will help to improve food quality and safety for consumers.

Keywords: cooperation, European Union, food chain safety, food law, microbiological risk, Microrisk, Poland, Ukraine

Procedia PDF Downloads 374
1 Industrial Waste to Energy Technology: Engineering Biowaste as High Potential Anode Electrode for Application in Lithium-Ion Batteries

Authors: Pejman Salimi, Sebastiano Tieuli, Somayeh Taghavi, Michela Signoretto, Remo Proietti Zaccaria

Abstract:

Increasing the growth of industrial waste due to the large quantities of production leads to numerous environmental and economic challenges, such as climate change, soil and water contamination, human disease, etc. Energy recovery of waste can be applied to produce heat or electricity. This strategy allows for the reduction of energy produced using coal or other fuels and directly reduces greenhouse gas emissions. Among different factories, leather manufacturing plays a very important role in the whole world from the socio-economic point of view. The leather industry plays a very important role in our society from a socio-economic point of view. Even though the leather industry uses a by-product from the meat industry as raw material, it is considered as an activity demanding integrated prevention and control of pollution. Along the entire process from raw skins/hides to finished leather, a huge amount of solid and water waste is generated. Solid wastes include fleshings, raw trimmings, shavings, buffing dust, etc. One of the most abundant solid wastes generated throughout leather tanning is shaving waste. Leather shaving is a mechanical process that aims at reducing the tanned skin to a specific thickness before tanning and finishing. This product consists mainly of collagen and tanning agent. At present, most of the world's leather processing is chrome-tanned based. Consequently, large amounts of chromium-containing shaving wastes need to be treated. The major concern about the management of this kind of solid waste is ascribed to chrome content, which makes the conventional disposal methods, such as landfilling and incineration, not practicable. Therefore, many efforts have been developed in recent decades to promote eco-friendly/alternative leather production and more effective waste management. Herein, shaving waste resulting from metal-free tanning technology is proposed as low-cost precursors for the preparation of carbon material as anodes for lithium-ion batteries (LIBs). In line with the philosophy of a reduced environmental impact, for preparing fully sustainable and environmentally friendly LIBs anodes, deionized water and carboxymethyl cellulose (CMC) have been used as alternatives to toxic/teratogen N-methyl-2- pyrrolidone (NMP) and to biologically hazardous Polyvinylidene fluoride (PVdF), respectively. Furthermore, going towards the reduced cost, we employed water solvent and fluoride-free bio-derived CMC binder (as an alternative to NMP and PVdF, respectively) together with LiFePO₄ (LFP) when a full cell was considered. These actions make closer to the 2030 goal of having green LIBs at 100 $ kW h⁻¹. Besides, the preparation of the water-based electrodes does not need a controlled environment and due to the higher vapour pressure of water in comparison with NMP, the water-based electrode drying is much faster. This aspect determines an important consequence, namely a reduced energy consumption for the electrode preparation. The electrode derived from leather waste demonstrated a discharge capacity of 735 mAh g⁻¹ after 1000 charge and discharge cycles at 0.5 A g⁻¹. This promising performance is ascribed to the synergistic effect of defects, interlayer spacing, heteroatoms-doped (N, O, and S), high specific surface area, and hierarchical micro/mesopore structure of the biochar. Interestingly, these features of activated biochars derived from the leather industry open the way for possible applications in other EESDs as well.

Keywords: biowaste, lithium-ion batteries, physical activation, waste management, leather industry

Procedia PDF Downloads 168