Search results for: box girder bridges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 363

Search results for: box girder bridges

3 Characterization of Aluminosilicates and Verification of Their Impact on Quality of Ceramic Proppants Intended for Shale Gas Output

Authors: Joanna Szymanska, Paulina Wawulska-Marek, Jaroslaw Mizera

Abstract:

Nowadays, the rapid growth of global energy consumption and uncontrolled depletion of natural resources become a serious problem. Shale rocks are the largest and potential global basins containing hydrocarbons, trapped in closed pores of the shale matrix. Regardless of the shales origin, mining conditions are extremely unfavourable due to high reservoir pressure, great depths, increased clay minerals content and limited permeability (nanoDarcy) of the rocks. Taking into consideration such geomechanical barriers, effective extraction of natural gas from shales with plastic zones demands effective operations. Actually, hydraulic fracturing is the most developed technique based on the injection of pressurized fluid into a wellbore, to initiate fractures propagation. However, a rapid drop of pressure after fluid suction to the ground induces a fracture closure and conductivity reduction. In order to minimize this risk, proppants should be applied. They are solid granules transported with hydraulic fluids to locate inside the rock. Proppants act as a prop for the closing fracture, thus gas migration to a borehole is effective. Quartz sands are commonly applied proppants only at shallow deposits (USA). Whereas, ceramic proppants are designed to meet rigorous downhole conditions to intensify output. Ceramic granules predominate with higher mechanical strength, stability in strong acidic environment, spherical shape and homogeneity as well. Quality of ceramic proppants is conditioned by raw materials selection. Aim of this study was to obtain the proppants from aluminosilicates (the kaolinite subgroup) and mix of minerals with a high alumina content. These loamy minerals contain a tubular and platy morphology that improves mechanical properties and reduces their specific weight. Moreover, they are distinguished by well-developed surface area, high porosity, fine particle size, superb dispersion and nontoxic properties - very crucial for particles consolidation into spherical and crush-resistant granules in mechanical granulation process. The aluminosilicates were mixed with water and natural organic binder to improve liquid-bridges and pores formation between particles. Afterward, the green proppants were subjected to sintering at high temperatures. Evaluation of the minerals utility was based on their particle size distribution (laser diffraction study) and thermal stability (thermogravimetry). Scanning Electron Microscopy was useful for morphology and shape identification combined with specific surface area measurement (BET). Chemical composition was verified by Energy Dispersive Spectroscopy and X-ray Fluorescence. Moreover, bulk density and specific weight were measured. Such comprehensive characterization of loamy materials confirmed their favourable impact on the proppants granulation. The sintered granules were analyzed by SEM to verify the surface topography and phase transitions after sintering. Pores distribution was identified by X-Ray Tomography. This method enabled also the simulation of proppants settlement in a fracture, while measurement of bulk density was essential to predict their amount to fill a well. Roundness coefficient was also evaluated, whereas impact on mining environment was identified by turbidity and solubility in acid - to indicate risk of the material decay in a well. The obtained outcomes confirmed a positive influence of the loamy minerals on ceramic proppants properties with respect to the strict norms. This research is perspective for higher quality proppants production with costs reduction.

Keywords: aluminosilicates, ceramic proppants, mechanical granulation, shale gas

Procedia PDF Downloads 145
2 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 346
1 The Impact of the Macro-Level: Organizational Communication in Undergraduate Medical Education

Authors: Julie M. Novak, Simone K. Brennan, Lacey Brim

Abstract:

Undergraduate medical education (UME) curriculum notably addresses micro-level communications (e.g., patient-provider, intercultural, inter-professional), yet frequently under-examines the role and impact of organizational communication, a more macro-level. Organizational communication, however, functions as foundation and through systemic structures of an organization and thereby serves as hidden curriculum and influences learning experiences and outcomes. Yet, little available research exists fully examining how students experience organizational communication while in medical school. Extant literature and best practices provide insufficient guidance for UME programs, in particular. The purpose of this study was to map and examine current organizational communication systems and processes in a UME program. Employing a phenomenology-grounded and participatory approach, this study sought to understand the organizational communication system from medical students' perspective. The research team consisted of a core team and 13 medical student co-investigators. This research employed multiple methods, including focus groups, individual interviews, and two surveys (one reflective of focus group questions, the other requesting students to submit ‘examples’ of communications). To provide context for student responses, nonstudent participants (faculty, administrators, and staff) were sampled, as they too express concerns about communication. Over 400 students across all cohorts and 17 nonstudents participated. Data were iteratively analyzed and checked for triangulation. Findings reveal the complex nature of organizational communication and student-oriented communications. They reveal program-impactful strengths, weaknesses, gaps, and tensions and speak to the role of organizational communication practices influencing both climate and culture. With regard to communications, students receive multiple, simultaneous communications from multiple sources/channels, both formal (e.g., official email) and informal (e.g., social media). Students identified organizational strengths including the desire to improve student voice, and message frequency. They also identified weaknesses related to over-reliance on emails, numerous platforms with inconsistent utilization, incorrect information, insufficient transparency, assessment/input fatigue, tacit expectations, scheduling/deadlines, responsiveness, and mental health confidentiality concerns. Moreover, they noted gaps related to lack of coordination/organization, ambiguous point-persons, student ‘voice-only’, open communication loops, lack of core centralization and consistency, and mental health bridges. Findings also revealed organizational identity and cultural characteristics as impactful on the medical school experience. Cultural characteristics included program size, diversity, urban setting, student organizations, community-engagement, crisis framing, learning for exams, inefficient bureaucracy, and professionalism. Moreover, they identified system structures that do not always leverage cultural strengths or reduce cultural problematics. Based on the results, opportunities for productive change are identified. These include leadership visibly supporting and enacting overall organizational narratives, making greater efforts in consistently ‘closing the loop’, regularly sharing how student input effects change, employing strategies of crisis communication more often, strengthening communication infrastructure, ensuring structures facilitate effective operations and change efforts, and highlighting change efforts in informational communication. Organizational communication and communications are not soft-skills, or of secondary concern within organizations, rather they are foundational in nature and serve to educate/inform all stakeholders. As primary stakeholders, students and their success directly affect the accomplishment of organizational goals. This study demonstrates how inquiries about how students navigate their educational experience extends research-based knowledge and provides actionable knowledge for the improvement of organizational operations in UME.

Keywords: medical education programs, organizational communication, participatory research, qualitative mixed methods

Procedia PDF Downloads 98