Search results for: biomarkers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 341

Search results for: biomarkers

11 Exploring the Relationship between Mediolateral Center of Pressure and Galvanic Skin Response during Balance Tasks

Authors: Karlee J. Hall, Mark Laylor, Jessy Varghese, Paula Polastri, Karen Van Ooteghem, William McIlroy

Abstract:

Balance training is a common part of physiotherapy treatment and often involves a set of proprioceptive exercises which the patient carries out in the clinic and as part of their exercise program. Understanding all contributing factors to altered balance is of utmost importance to the clinical success of treatment of balance dysfunctions. A critical role for the autonomic nervous system (ANS) in the control of balance reactions has been proposed previously, with evidence for potential involvement being inferred from the observation of phasic galvanic skin responses (GSR) evoked by external balance perturbations. The current study explored whether the coupling between ANS reactivity and balance reactions would be observed during spontaneously occurring instability while standing, including standard positions typical of physiotherapy balance assessments. It was hypothesized that time-varying changes in GSR (ANS reactivity) would be associated with time-varying changes in the mediolateral center of pressure (ML-COP) (somatomotor reactivity). Nine individuals (5 females, 4 males, aged 19-37 years) were recruited. To induce varying balance demands during standing, the study compared ML-COP and GSR data across different task conditions varying the availability of vision and width of the base of support. Subjects completed 3, 30-second trials for each of the following stance conditions: standard, narrow, and tandem eyes closed, tandem eyes open, tandem eyes open with dome to shield visual input, and restricted peripheral visual field. ANS activity was evaluated by measures of GSR recorded from Ag-AgCl electrodes on the middle phalanges of digits 2 and 4 on the left hand; balance measures include ML-COP excursion frequency and amplitude recorded from two force plates embedded in the floor underneath each foot. Subjects were instructed to stand as still as possible with arms crossed in front of their chest. When comparing mean task differences across subjects, there was an expected increase in postural sway from tasks with a wide stance and no sensory restrictions (least challenging) to those with a narrow stance and no vision (most challenging). The correlation analysis revealed a significant positive relationship between ML-COP variability and GSR variability when comparing across tasks (r=0.94, df=5, p < 0.05). In addition, correlations coincided within each subject and revealed a significant positive correlation in 7 participants (r= 0.47, 0.57, 0.62, 0.62, 0.81, 0.64, 0.69 respectively, df=19, p < 0.05) and no significant relationship in 2 participants (r=0.36, 0.29 respectively, df=19, p > 0.05). The current study revealed a significant relationship between ML-COP and GSR during balance tasks, revealing the ANS reactivity associated with naturally occurring instability when standing still, which is proportional to the degree of instability. Understanding the link between ANS activity and control of COP is an important step forward in the enhancement of assessment of contributing factors to poor balance and treatment of balance dysfunctions. The next steps will explore the temporal association between the time-varying changes in COP and GSR to establish if the ANS reactivity phase leads or lags the evoked motor reactions, as well as exploration of potential biomarkers for use in screening of ANS activity as a contributing factor to altered balance control clinically.

Keywords: autonomic nervous system, balance control, center of pressure, somatic nervous system

Procedia PDF Downloads 169
10 Surface Plasmon Resonance Imaging-Based Epigenetic Assay for Blood DNA Post-Traumatic Stress Disorder Biomarkers

Authors: Judy M. Obliosca, Olivia Vest, Sandra Poulos, Kelsi Smith, Tammy Ferguson, Abigail Powers Lott, Alicia K. Smith, Yang Xu, Christopher K. Tison

Abstract:

Post-Traumatic Stress Disorder (PTSD) is a mental health problem that people may develop after experiencing traumatic events such as combat, natural disasters, and major emotional challenges. Tragically, the number of military personnel with PTSD correlates directly with the number of veterans who attempt suicide, with the highest rate in the Army. Research has shown epigenetic risks in those who are prone to several psychiatric dysfunctions, particularly PTSD. Once initiated in response to trauma, epigenetic alterations in particular, the DNA methylation in the form of 5-methylcytosine (5mC) alters chromatin structure and represses gene expression. Current methods to detect DNA methylation, such as bisulfite-based genomic sequencing techniques, are laborious and have massive analysis workflow while still having high error rates. A faster and simpler detection method of high sensitivity and precision would be useful in a clinical setting to confirm potential PTSD etiologies, prevent other psychiatric disorders, and improve military health. A nano-enhanced Surface Plasmon Resonance imaging (SPRi)-based assay that simultaneously detects site-specific 5mC base (termed as PTSD base) in methylated genes related to PTSD is being developed. The arrays on a sensing chip were first constructed for parallel detection of PTSD bases using synthetic and genomic DNA (gDNA) samples. For the gDNA sample extracted from the whole blood of a PTSD patient, the sample was first digested using specific restriction enzymes, and fragments were denatured to obtain single-stranded methylated target genes (ssDNA). The resulting mixture of ssDNA was then injected into the assay platform, where targets were captured by specific DNA aptamer probes previously immobilized on the surface of a sensing chip. The PTSD bases in targets were detected by anti-5-methylcytosine antibody (anti-5mC), and the resulting signals were then enhanced by the universal nanoenhancer. Preliminary results showed successful detection of a PTSD base in a gDNA sample. Brighter spot images and higher delta values (control-subtracted reflectivity signal) relative to those of the control were observed. We also implemented the in-house surface activation system for detection and developed SPRi disposable chips. Multiplexed PTSD base detection of target methylated genes in blood DNA from PTSD patients of severity conditions (asymptomatic and severe) was conducted. This diagnostic capability being developed is a platform technology, and upon successful implementation for PTSD, it could be reconfigured for the study of a wide variety of neurological disorders such as traumatic brain injury, Alzheimer’s disease, schizophrenia, and Huntington's disease and can be extended to the analyses of other sample matrices such as urine and saliva.

Keywords: epigenetic assay, DNA methylation, PTSD, whole blood, multiplexing

Procedia PDF Downloads 130
9 Comparative Proteomic Profiling of Planktonic and Biofilms from Staphylococcus aureus Using Tandem Mass Tag-Based Mass Spectrometry

Authors: Arifur Rahman, Ardeshir Amirkhani, Honghua Hu, Mark Molloy, Karen Vickery

Abstract:

Introduction and Objectives: Staphylococcus aureus and coagulase-negative staphylococci comprises approximately 65% of infections associated with medical devices and are well known for their biofilm formatting ability. Biofilm-related infections are extremely difficult to eradicate owing to their high tolerance to antibiotics and host immune defences. Currently, there is no efficient method for early biofilm detection. A better understanding to enable detection of biofilm specific proteins in vitro and in vivo can be achieved by studying planktonic and different growth phases of biofilms using a proteome analysis approach. Our goal was to construct a reference map of planktonic and biofilm associated proteins of S. aureus. Methods: S. aureus reference strain (ATCC 25923) was used to grow 24 hours planktonic, 3-day wet biofilm (3DWB), and 12-day wet biofilm (12DWB). Bacteria were grown in tryptic soy broth (TSB) liquid medium. Planktonic growth was used late logarithmic bacteria, and the Centres for Disease Control (CDC) biofilm reactor was used to grow 3 days, and 12-day hydrated biofilms, respectively. Samples were subjected to reduction, alkylation and digestion steps prior to Multiplex labelling using Tandem Mass Tag (TMT) 10-plex reagent (Thermo Fisher Scientific). The labelled samples were pooled and fractionated by high pH RP-HPLC which followed by loading of the fractions on a nanoflow UPLC system (Eksigent UPLC system, AB SCIEX). Mass spectrometry (MS) data were collected on an Orbitrap Elite (Thermo Fisher Scientific) Mass Spectrometer. Protein identification and relative quantitation of protein levels were performed using Proteome Discoverer (version 1.3, Thermo Fisher Scientific). After the extraction of protein ratios with Proteome Discoverer, additional processing, and statistical analysis was done using the TMTPrePro R package. Results and Discussion: The present study showed that a considerable proteomic difference exists among planktonic and biofilms from S. aureus. We identified 1636 total extracellular secreted proteins, of which 350 and 137 proteins of 3DWB and 12DWB showed significant abundance variation from planktonic preparation, respectively. Of these, simultaneous up-regulation in between 3DWB and 12DWB proteins such as extracellular matrix-binding protein ebh, enolase, transketolase, triosephosphate isomerase, chaperonin, peptidase, pyruvate kinase, hydrolase, aminotransferase, ribosomal protein, acetyl-CoA acetyltransferase, DNA gyrase subunit A, glycine glycyltransferase and others we found in this biofilm producer. On the contrary, simultaneous down-regulation in between 3DWB and 12DWB proteins such as alpha and delta-hemolysin, lipoteichoic acid synthase, enterotoxin I, serine protease, lipase, clumping factor B, regulatory protein Spx, phosphoglucomutase, and others also we found in this biofilm producer. In addition, we also identified a big percentage of hypothetical proteins including unique proteins. Therefore, a comprehensive knowledge of planktonic and biofilm associated proteins identified by S. aureus will provide a basis for future studies on the development of vaccines and diagnostic biomarkers. Conclusions: In this study, we constructed an initial reference map of planktonic and various growth phase of biofilm associated proteins which might be helpful to diagnose biofilm associated infections.

Keywords: bacterial biofilms, CDC bioreactor, S. aureus, mass spectrometry, TMT

Procedia PDF Downloads 173
8 FELIX: 40 Hz Masked Flickering Light as a Potential Treatment of Major Depressive Disorder

Authors: Nikolas Aasheim, Laura Sakalauskaitė, Julie Dubois, Malina Ploug Larsen, Paul Michael Petersen, Marcus S. Carstensen, Marcus S. Carstensen, Mai Nguyen, Line Katrine Harder Clemmensen, Kamilla Miskowiak, Klaus Martiny

Abstract:

Background: Major depressive disorder (MDD) is a debilitating condition that affects more than 300 million people worldwide and profoundly impacts well-being and health. Current treatments are based on a trial-and-error approach, and reliable biomarkers are needed for more informed and personalized treatment solutions. One potential biomarker is aberrant gamma-frequency (30-80 Hz) brainwaves, hypothesized to originate from deficiencies in the excitatory-inhibitory interaction between the pyramidal cells and interneurons. An imbalance within this interaction is described as a crucial pathological mechanism in various neuropsychiatric conditions, including MDD, and the modulation of this pathological interaction has been investigated as a potential target. A specific type of steady-state visually evoked potential (SSVEP) in the gamma frequency band, referred to as gamma entrainment using sensory stimuli (GENUS), particularly around the 40Hz spectrum, entrains large scale, fast-spiking PV+ interneurons, facilitating coordinated activity in key brain regions, reduced neuronal and synaptic loss, and enhanced synaptic stability and plasticity. GENUS has shown promise in improving sleep, offering neuroprotective effects in Alzheimer's disease (AD), and reducing pathological markers like Amyloid Beta and TAU proteins, as seen in animal models. In this study, we explore the antidepressant, cognitive, and electrophysiological effects of a novel, non-invasive brain stimulation (NIBS) approach utilizing a 40 Hz invisible spectral flicker to induce gamma activity in patients diagnosed with Major Depressive Disorder (MDD). This non-invasive targeted stimulation of lower gamma band activity (40 Hz) is designed to modulate neural circuits associated with mood and cognitive functions, providing a potential new therapeutic avenue for MDD. Methods and Design: 60 patients with a current diagnosis of a major depressive episode will be enrolled in a randomized, double-blinded, placebo-controlled trial. The active treatment group will receive 40 Hz invisible spectral flickering light stimulation while the control group will receive continuous light matched in colour temperature and brightness. Patients in both groups will get an hour of daily light treatment in their own homes and will attend four follow-up visits to assess depression severity measured by Hamilton Depression Rating Scale (HAM-D₆), several aspects of sleep, cognitive function, quality of life. Additionally, exploratory EEG is conducted to assess spectral changes throughout the protocol. The primary endpoint is the mean change from baseline to week 6 in depression severity (HAM-D₆ subset) between the groups. Current state of affairs/timeline: The FELIX study was initiated in the beginning of 2022, planning to reach stage of publication in December 2025. 21 participants have been enrolled in the protocol thus far, expecting to be finished with trials and recruitment by the end of 2024.

Keywords: major depressive disorder, gamma, neurostimulation, EEG

Procedia PDF Downloads 19
7 Assessment of Airborne PM0.5 Mutagenic and Genotoxic Effects in Five Different Italian Cities: The MAPEC_LIFE Project

Authors: T. Schilirò, S. Bonetta, S. Bonetta, E. Ceretti, D. Feretti, I. Zerbini, V. Romanazzi, S. Levorato, T. Salvatori, S. Vannini, M. Verani, C. Pignata, F. Bagordo, G. Gilli, S. Bonizzoni, A. Bonetti, E. Carraro, U. Gelatti

Abstract:

Air pollution is one of the most important worldwide health concern. In the last years, in both the US and Europe, new directives and regulations supporting more restrictive pollution limits were published. However, the early effects of air pollution occur, especially for the urban population. Several epidemiological and toxicological studies have documented the remarkable effect of particulate matter (PM) in increasing morbidity and mortality for cardiovascular disease, lung cancer and natural cause mortality. The finest fractions of PM (PM with aerodynamic diameter <2.5 µm and less) play a major role in causing chronic diseases. The International Agency for Research on Cancer (IARC) has recently classified air pollution and fine PM as carcinogenic to human (1 Group). The structure and composition of PM influence the biological properties of particles. The chemical composition varies with season and region of sampling, photochemical-meteorological conditions and sources of emissions. The aim of the MAPEC (Monitoring Air Pollution Effects on Children for supporting public health policy) study is to evaluate the associations between air pollution and biomarkers of early biological effects in oral mucosa cells of 6-8 year old children recruited from first grade schools. The study was performed in five Italian towns (Brescia, Torino, Lecce, Perugia and Pisa) characterized by different levels of airborne PM (PM10 annual average from 44 µg/m3 measured in Torino to 20 µg/m3 measured in Lecce). Two to five schools for each town were chosen to evaluate the variability of pollution within the same town. Child exposure to urban air pollution was evaluated by collecting ultrafine PM (PM0.5) in the school area, on the same day of biological sampling. PM samples were collected for 72h using a high-volume gravimetric air sampler and glass fiber filters in two different seasons (winter and spring). Gravimetric analysis of the collected filters was performed; PM0.5 organic extracts were chemically analyzed (PAH, Nitro-PAH) and tested on A549 by the Comet assay and Micronucleus test and on Salmonella strains (TA100, TA98, TA98NR and YG1021) by Ames test. Results showed that PM0.5 represents a high variable PM10 percentage (range 19.6-63%). PM10 concentration were generally lower than 50µg/m3 (EU daily limit). All PM0.5 extracts showed a mutagenic effect with TA98 strain (net revertant/m3 range 0.3-1.5) and suggested the presence of indirect mutagens, while lower effect was observed with TA100 strain. The results with the TA98NR and YG1021 strains showed the presence of nitroaromatic compounds as confirmed by the chemical analysis. No genotoxic or oxidative effect of PM0.5 extracts was observed using the comet assay (with/without Fpg enzyme) and micronucleus test except for some sporadic samples. The low biological effect observed could be related to the low level of air pollution observed in this winter sampling associated to a high atmospheric instability. For a greater understanding of the relationship between PM size, composition and biological effects the results obtained in this study suggest to investigate the biological effect of the other PM fractions and in particular of the PM0.5-1 fraction.

Keywords: airborne PM, ames test, comet assay, micronucleus test

Procedia PDF Downloads 323
6 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development

Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng

Abstract:

Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.

Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics

Procedia PDF Downloads 172
5 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow

Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan

Abstract:

Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.

Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection

Procedia PDF Downloads 135
4 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit

Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi

Abstract:

Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).

Keywords: deep learning, delirium, healthcare, pervasive sensing

Procedia PDF Downloads 95
3 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg

Abstract:

Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis

Procedia PDF Downloads 344
2 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 132
1 Dynamic Theory of Criminal Psychology Effect on Human Organs: A Comprehensive Study by the Scientific Activism in View of Judicial Interpretation and Impact on Global Society

Authors: Tanmoy Basu

Abstract:

The dynamic theory of criminal psychology and its physiological effects on human organs presents a novel perspective that bridges the gap between behavioral sciences and medical research, with significant implications for judicial interpretation and global societal impact. This study seeks to explore the intricate interplay between psychological factors driving criminal behavior and their measurable effects on the human body, hypothesizing that psychological stressors inherent in criminal tendencies produce detectable physiological changes. These insights have the potential to reshape approaches to crime prevention, judicial fairness, and rehabilitation strategies worldwide. Criminal psychology, often confined to behavioral and cognitive dimensions, rarely considers its direct impact on human biology. This research proposes that criminal tendencies and behavior's, characterized by heightened psychological stress and deviant mental patterns, trigger physiological responses in the cardiovascular, endocrine, and neurological systems. The scientific questions addressed here are pivotal: Can criminal psychology leave biological imprints? If so, can these markers provide early warning systems or contribute to judicial evaluations of criminal accountability? Addressing these questions can transform the intersection of science, law, and society. Criminological theories traditionally focus on socio-economic, cultural, or psychological triggers for criminal acts. However, emerging research underscores the psychosomatic connections between mental states and bodily health. Psychological stressors such as anxiety, guilt, or fear—common in individuals predisposed to criminal behavior—may lead to systemic changes in hormone levels, cardiovascular strain, and neural activity. Despite these connections, their implications for understanding criminal behavior remain underexplored, leaving a critical gap in the literature. This study adopts a multidisciplinary, mixed-methods approach that combines empirical data collection with theoretical analysis. Neurological imaging, biomarkers, and physiological testing are employed to identify and quantify changes in the human body associated with individuals exhibiting criminal tendencies. These data are correlated with detailed case histories, enabling an integrative perspective on how psychological and physiological factors converge in criminal behavior. Complementary qualitative analyses provide insights into contextual factors, such as socio-environmental stressors, that influence these physiological responses. Preliminary results reveal a strong correlation between criminal psychology and physiological dysfunction. Specifically, individuals displaying persistent criminal tendencies exhibit elevated cortisol levels, irregular heart rate patterns, and abnormal neural activity in regions associated with impulse control and decision-making. These findings suggest that criminal psychology is not merely a cognitive or emotional phenomenon but one with tangible biological markers. The results are interpreted through the lens of judicial applications, suggesting that physiological markers could supplement psychological evaluations in assessing criminal intent and responsibility. This perspective raises ethical considerations about the use of biological data in legal systems, highlighting the need for careful policy-making. The study advocates for integrating scientific activism into judicial frameworks, enabling more evidence-based decisions that consider both psychological and physiological dimensions of criminal behavior. This research holds transformative potential for global society. By recognizing the biological underpinnings of criminal psychology, policymakers can devise more holistic crime prevention strategies and rehabilitation programmed. Furthermore, this understanding promotes equitable judicial interpretations, ensuring that decisions are informed by comprehensive, evidence-based analyses. This comprehensive investigation not only deepens the understanding of criminal psychology but also paves the way for innovative intersections between science, law, and societal reform.

Keywords: behavioral science, criminal psychology, cognitive dimensions, dysfunction, dynamic theory, emotional phenomenon, global societal impact, human organs, judicial interpretation, psychological changes, rehabilitation strategies

Procedia PDF Downloads 10