Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6997

World Academy of Science, Engineering and Technology

[Aerospace and Mechanical Engineering]

Online ISSN : 1307-6892

6997 Diversion of Airplanes for Medical Emergencies at Taoyuan International Airport

Authors: Chin-Hsiang Lo, Wey Chia, Shih-Tien Hsu


Introduction: Since 2016, the annual number of passengers on commercial flights at Taoyuan International Airport (TIA) has been ~40 million. Due to the outbreak and spread of COVID-19, the number of international flights sharply diminished in recent years. However, TIA is located at an East-Asian flight transportation junction; thus, many commercial and cargo flights continue service. When severe medical events happen on a commercial airliner, the decision to divert or not is based on consideration of both medical and operational issues. This study discusses the events related to the diversion of airplanes or reentry after taxiing for medical emergencies at Taoyuan International Airport. Background: We analyzed emergency medical records from the medical clinic of TIA from January 1, 2017, to December 31, 2022, for patients who needed emergency medical services but were unable to reach the airport clinic by themselves. We also collected data for patients treated after diversion from other airports or reentry after taxiing due to medical emergencies. Information such as when and where the event occurred, chief signs and symptoms, the tentative diagnosis (using the ICD-9-CM), management, and the sociodemographic features of the passengers were extracted from the medical records. Summary of Cases: TIA handled approximately 152 million passengers and 1,093,762 flights during the study period; a total of 2,804 emergencies occurred during this time period. Thirty-three medical emergencies warranted diversion (21 cases) or reentry (12 cases); 13 cases were diverted from Asia-Pacific flights and five from Asia-North America flights. The age of the passengers with diversion emergencies ranged from 2–85 years (mean, 46±20-years-old). Twenty-seven patients were transported to an emergency department, and four patients died. For all cases of diversion or reentry, the most common diagnoses were neurogenic problems (42.4%), Out-of-hospital cardiac arrest (OHCA) (15.2%), and cardiovascular problems (12.1%). Discussion: Most aircraft diversions were related to syncope, seizure, and OHCA. The decision to divert depends on medical and operational considerations. Emergency conditions are often serious; thus, improvement of the effectiveness of cooperation between airlines and medical teams remains a challenge.

Keywords: diversion, syncope, seizure, OHCA

Procedia PDF Downloads 5
6996 Acoustic Test and Response Analytical Prediction with Different Sound Pressure Level of the TRITON Satellite

Authors: Wei-Chuan Wu, Yung-Chieh Hsu


Spacecraft should endure acoustic loads during launch. While the SPL (Sound Pressure Level) may change during the launch vehicle system test period, predicting the structure response for various acoustic loads is helpful in estimating the structural strength. TRITON Satellite has excused a high-intensity acoustic test in a reverberant chamber in the final stage of integration and test. This paper will mention the SEA (Statistical Energy Analysis) method to predict the structural response for acoustic excitation at high-frequency periods with different SPL, the acoustic methodology, and compare the predicted responses with test results that make sure the structure can endure the acoustic loads. The objective of the TRITON satellite acoustic test was to verify the ability of the avionics and structure to endure the broadband acoustic environment experienced within the launch vehicle payload fairing. While the acoustic spectrum from the launch vehicle changed several times, the prediction is useful for decreasing the test times. The TRITON satellite was tested in the reverberant chamber at an overall sound pressure level. The spectrum control system of the acoustic test facility used eight control microphones to maintain target spectrum levels within tolerances. The dynamic response was measured by many accelerations installed on the critical locations of the TRITON satellite. The acoustic response of the TRITON satellite was also predicted based on a finite element model and SEA analysis to identify the critical components with a proto-flight acoustic test based on the specified launch vehicle spectrum. The analysis method used to predict the responses combines the MSC/NASTRAN solver and SEA+, an acoustic simulation software from Siemens. Responses from many locations were compared with the predictions in critical locations such as the solar arrays. Because of the time limit and cost constraints in a satellite development program, it is significant to perform both acoustic tests as well as predictions by analysis in an efficient manner to validate the structural designs of a spacecraft.

Keywords: statistical energy analysis, acoustic, FEM, payload fairing, TRITON satellite

Procedia PDF Downloads 2
6995 The Role of Heat Pumps in the Decarbonization of European Regions

Authors: Domenico Carmelo Mongelli, Michele De Carli, Laura Carnieletto, Filippo Busato


Europe's dependence on imported fossil fuels has been particularly highlighted by the Russian invasion of Ukraine. Limiting this dependency with a massive replacement of fossil fuel boilers with heat pumps for building heating is the goal of this work. Therefore, with the aim of diversifying energy sources and evaluating the potential use of heat pump technologies for residential buildings with a view to decarbonization, the quantitative reduction in the consumption of fossil fuels was investigated in all regions of Europe through the use of heat pumps. First, a general overview of energy consumption in buildings in Europe has been assessed. The consumption of buildings has been addressed to the different uses (heating, cooling, DHW, etc.) as well as the different sources (natural gas, oil, biomass, etc.). The analysis has been done in order to provide a baseline at the European level on the current consumptions and future consumptions, with a particular interest in the future increase of cooling. A database was therefore created on the distribution of residential energy consumption linked to air conditioning among the various energy carriers (electricity, waste heat, gas, solid fossil fuels, liquid fossil fuels, and renewable sources) for each region in Europe. Subsequently, the energy profiles of various European cities representative of the different climates are analyzed in order to evaluate, in each European climatic region, which energy coverage can be provided by heat pumps in replacement of natural gas and solid and liquid fossil fuels for air conditioning of the buildings, also carrying out the environmental and economic assessments for this energy transition operation. This work aims to make an innovative contribution to the evaluation of the potential for introducing heat pump technology for decarbonization in the air conditioning of buildings in all climates of the different European regions.

Keywords: heat pumps, heating, decarbonization, energy policies

Procedia PDF Downloads 3
6994 Design, Fabrication, and Study of Droplet Tube Based Triboelectric Nanogenerators

Authors: Yana Xiao


The invention of Triboelectric Nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interfaces-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplets have rarely been investigated. In this study, we have proposed a new kind of droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs were designed, fabricated, and evaluated, including straight tubes TENG with 27 electrodes and curved tubes TENG of 25cm radius curvature- at the inclination of 30°, 45° and 60° respectively. Different materials and hydrophobicity treatments for the tubes have also been studied, together with a discussion on the mechanism and applications of DT-TENGs. As different types of liquid discrepant energy performance, this kind of DT-TENG can be potentially used in laboratories to identify liquid or solvent. In addition, a smart fishing float is contrived, which can recognize different levels of movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. The electric generation performance when using a PVC helix tube around a cylinder is similar in straight situations under the inclination of 45° in this experiment. This new structure changes the direction of a water drop or flows without losing kinetic energy, which makes utilizing Helix-Tube-TENG to harvest energy from different building morphologies possible.

Keywords: triboelectric nanogenerator, energy harvest, liquid tribomaterial, structure innovation

Procedia PDF Downloads 10
6993 Design of Robust and Intelligent Controller for Active Removal of Space Debris

Authors: Shabadini Sampath, Jinglang Feng


With huge kinetic energy, space debris poses a major threat to astronauts’ space activities and spacecraft in orbit if a collision happens. The active removal of space debris is required in order to avoid frequent collisions that would occur. In addition, the amount of space debris will increase uncontrollably, posing a threat to the safety of the entire space system. But the safe and reliable removal of large-scale space debris has been a huge challenge to date. While capturing and deorbiting space debris, the space manipulator has to achieve high control precision. However, due to uncertainties and unknown disturbances, there is difficulty in coordinating the control of the space manipulator. To address this challenge, this paper focuses on developing a robust and intelligent control algorithm that controls joint movement and restricts it on the sliding manifold by reducing uncertainties. A neural network adaptive sliding mode controller (NNASMC) is applied with the objective of finding the control law such that the joint motions of the space manipulator follow the given trajectory. A computed torque control (CTC) is an effective motion control strategy that is used in this paper for computing space manipulator arm torque to generate the required motion. Based on the Lyapunov stability theorem, the proposed intelligent controller NNASMC and CTC guarantees the robustness and global asymptotic stability of the closed-loop control system. Finally, the controllers used in the paper are modeled and simulated using MATLAB Simulink. The results are presented to prove the effectiveness of the proposed controller approach.

Keywords: GNC, active removal of space debris, AI controllers, MatLabSimulink

Procedia PDF Downloads 13
6992 Study on the Process of Detumbling Space Target by Laser

Authors: Zhang Pinliang, Chen Chuan, Song Guangming, Wu Qiang, Gong Zizheng, Li Ming


The active removal of space debris and asteroid defense are important issues in human space activities. Both of them need a detumbling process, for almost all space debris and asteroid are in a rotating state, and it`s hard and dangerous to capture or remove a target with a relatively high tumbling rate. So it`s necessary to find a method to reduce the angular rate first. The laser ablation method is an efficient way to tackle this detumbling problem, for it`s a contactless technique and can work at a safe distance. In existing research, a laser rotational control strategy based on the estimation of the instantaneous angular velocity of the target has been presented. But their calculation of control torque produced by a laser, which is very important in detumbling operation, is not accurate enough, for the method they used is only suitable for the plane or regularly shaped target, and they did not consider the influence of irregular shape and the size of the spot. In this paper, based on the triangulation reconstruction of the target surface, we propose a new method to calculate the impulse of the irregularly shaped target under both the covered irradiation and spot irradiation of the laser and verify its accuracy by theoretical formula calculation and impulse measurement experiment. Then we use it to study the process of detumbling cylinder and asteroid by laser. The result shows that the new method is universally practical and has high precision; it will take more than 13.9 hours to stop the rotation of Bennu with 1E+05kJ laser pulse energy; the speed of the detumbling process depends on the distance between the spot and the centroid of the target, which can be found an optimal value in every particular case.

Keywords: detumbling, laser ablation drive, space target, space debris remove

Procedia PDF Downloads 10
6991 The Incompressible Preference of Turbulence

Authors: Samuel David Dunstan


An elementary observation of a laminar cylindrical Poiseulle-Couette flow profile reveals no distinction in the parabolic streamwise profile from one without a cross-stream flow in whatever reference frame the observation is made. This is because the laminar flow is in solid-body rotation, and there is no intrinsic fluid rotation. Hence the main streamwise Poiseuille flow is unaffected. However, in turbulent (unsteady) cylindrical Poiseuille-Couette flow, the rotational reference frame must be considered, and any observation from an external inertial reference frame can give outright incorrect results. A common misconception in the study of fluid mechanics is the position of the observer does not matter. In this DNS (direct numerical simulation) study, firstly, turbulent flow in a pipe with axial rotation is established. Then in turbulent flow in the concentric pipe, with inner wall rotation, it is shown how the wall streak direction is oriented by the rotational reference frame. The Coriolis force here is not so fictitious after all!

Keywords: concentric pipe, rotational and inertial frames, frame invariance, wall streaks, flow orientation

Procedia PDF Downloads 9
6990 A Visual Inspection System for Automotive Sheet Metal Chasis Parts Produced with Cold-Forming Method

Authors: İmren Öztürk Yılmaz, Abdullah Yasin Bilici, Yasin Atalay Candemir


The system consists of 4 main elements: motion system, image acquisition system, image processing software, and control interface. The parts coming out of the production line to enter the image processing system with the conveyor belt at the end of the line. The 3D scanning of the produced part is performed with the laser scanning system integrated into the system entry side. With the 3D scanning method, it is determined at what position and angle the parts enter the system, and according to the data obtained, parameters such as part origin and conveyor speed are calculated with the designed software, and the robot is informed about the position where it will take part. The robot, which receives the information, takes the produced part on the belt conveyor and shows it to high-resolution cameras for quality control. Measurement processes are carried out with a maximum error of 20 microns determined by the experiments.

Keywords: quality control, industry 4.0, image processing, automated fault detection, digital visual inspection

Procedia PDF Downloads 17
6989 A Method to Ease the Military Certification Process by Taking Advantage of Civil Standards in the Scope of Human Factors

Authors: Burcu Uçan


The certification approach differs in civil and military projects in aviation. Sets of criteria and standards created by airworthiness authorities for the determination of certification basis are distinct. While the civil standards are more understandable and clear because of not only include detailed specifications but also the help of guidance materials such as Advisory Circular, military criteria do not provide this level of guidance. Therefore, specifications that are more negotiable and sometimes more difficult to reconcile arise for the certification basis of a military aircraft. This study investigates a method of how to develop a military specification set by taking advantage of civil standards, regarding the European Military Airworthiness Criteria (EMACC) that establishes the airworthiness criteria for aircraft systems. Airworthiness Certification Criteria (MIL-HDBK-516C) is a handbook published for guidance that contains qualitative evaluation for military aircrafts meanwhile Certification Specifications (CS-29) is published for civil aircrafts by European Union Aviation Safety Agency (EASA). This method intends to compare and contrast specifications that MIL-HDBK-516C and CS-29 contain within the scope of Human Factors. Human Factors supports human performance and aims to improve system performance by encompassing knowledge from a range of scientific disciplines. Human Factors focuses on how people perform their tasks and reduce the risk of an accident occurring due to human physical and cognitive limitations. Hence, regardless of whether the project is civil or military, the specifications must be guided at a certain level by taking into account human limits. This study presents an advisory method for this purpose. The method in this study develops a solution for the military certification process by identifying the CS requirement corresponding to the criteria in the MIL-HDBK-516C by means of EMACC. Thus, it eases understanding the expectations of the criteria and establishing derived requirements. As a result of this method, it may not always be preferred to derive new requirements. Instead, it is possible to add remarks to make the expectancy of the criteria and required verification methods more comprehensible for all stakeholders. This study contributes to creating a certification basis for military aircraft, which is difficult and takes plenty of time for stakeholders to agree due to gray areas in the certification process for military aircrafts.

Keywords: human factors, certification, aerospace, requirement

Procedia PDF Downloads 6
6988 Numerical Study of Sloshing in a Flexible Tank

Authors: Wissem Tighidet, Faïçal Naït Bouda, Moussa Allouche


The numerical study of the Fluid-Structure Interaction (FSI) in a partially filled flexible tank submitted to a horizontal harmonic excitation motion. It is investigated by using two-way Fluid-Structure Interaction (FSI) in a flexible tank by Coupling between the Transient Structural (Mechanical) and Fluid Flow (Fluent) in ANSYS-Workbench Student version. The Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted to solve with the finite volume method, the Navier-Stokes equations in two phases in a moving domain. The Volume of Fluid (VOF) method is applied to track the free surface. However, the equations of the dynamics of the structure are solved with the finite element method assuming a linear elastic behavior. To conclude, the Fluid-Structure Interaction (IFS) has a vital role in the analysis of the dynamic behavior of the rectangular tank. The results indicate that the flexibility of the tank walls has a significant impact on the amplitude of tank sloshing and the deformation of the free surface as well as the effect of liquid sloshing on wall deformation.

Keywords: arbitrary lagrangian-eulerian, fluid-structure interaction, sloshing, volume of fluid

Procedia PDF Downloads 11
6987 Von Roll Approach to Sustainable Composites Demonstrated with New Solutions for the Cabin Interior Sector

Authors: Fiorenzo Lenzi


The work shows how sustainability has been the key focus for Von Roll in the development of new composites specifically for the cabin interior market. After extensive research, Von roll presents new epoxy-based prepregs for the aerospace interior market that have been developed to substitute phenolic prepregs in order to reduce the environmental impact of their production process and to reduce the health and safety issue related to their handling. Another example is the use of more sustainable approaches for the development and manufacturing of Mica based products for fire protection applications and Li-ion batteries protection.

Keywords: prepreg, epoxy, Mica, battery protection

Procedia PDF Downloads 9
6986 Process Mining as an Ecosystem Platform to Mitigate a Deficiency of Processes Modelling

Authors: Yusra Abdulsalam Alqamati, Ahmed Alkilany


The teaching staff is a distinct group whose impact is on the educational process and which plays an important role in enhancing the quality of the academic education process. To improve the management effectiveness of the academy, the Teaching Staff Management System (TSMS) proposes that all teacher processes be digitized. Since the BPMN approach can accurately describe the processes, it lacks a clear picture of the process flow map, something that the process mining approach has, which is extracting information from event logs for discovery, monitoring, and model enhancement. Therefore, these two methodologies were combined to create the most accurate representation of system operations, the ability to extract data records and mining processes, recreate them in the form of a Petri net, and then generate them in a BPMN model for a more in-depth view of process flow. Additionally, the TSMS processes will be orchestrated to handle all requests in a guaranteed small-time manner thanks to the integration of the Google Cloud Platform (GCP), the BPM engine, and allowing business owners to take part throughout the entire TSMS project development lifecycle.

Keywords: process mining, BPM, business process model and notation, Petri net, teaching staff, Google Cloud Platform

Procedia PDF Downloads 19
6985 Study of Launch Recovery Control Dynamics of Retro Propulsive Reusable Rockets

Authors: Pratyush Agnihotri


The space missions are very costly because the transportation to the space is highly expensive and therefore there is the need to achieve complete re-usability in our launch vehicles to make the missions highly economic by cost cutting of the material recovered. Launcher reusability is the most efficient approach to decreasing admittance to space access economy, however stays an incredible specialized hurdle for the aerospace industry. Major concern of the difficulties lies in guidance and control procedure and calculations, specifically for those of the controlled landing stage, which should empower an exact landing with low fuel edges. Although cutting edge ways for navigation and control are present viz hybrid navigation and robust control. But for powered descent and landing of first stage of launch vehicle the guidance control is need to enable on board optimization. At first the CAD model of the launch vehicle I.e. space x falcon 9 rocket is presented for better understanding of the architecture that needs to be identified for the guidance and control solution for the recovery of the launcher. The focus is on providing the landing phase guidance scheme for recovery and re usability of first stage using retro propulsion. After reviewing various GNC solutions, to achieve accuracy in pre requisite landing online convex and successive optimization are explored as the guidance schemes.

Keywords: guidance, navigation, control, retro propulsion, reusable rockets

Procedia PDF Downloads 19
6984 Evaluation of Inceptor Design for Manned Multicopter

Authors: Jędrzej Minda


In aviation, a very narrow spectrum of control inceptors exists, namely centre sticks, side-sticks, pedals, and yokes. However, new types of aircraft are emerging, and with them, a need for new inceptors. A manned multicopter created at AGH University of Science and Technology is an aircraft in which the pilot takes a specific orientation in which classical inceptors may be impractical to use. In this paper, a unique kind of control inceptor is described, which aims to provide a handling quality not unlike standard solutions, and provide a firm grip point for the pilot without the risk of involuntary stick movement. Simulations of the pilot-inceptor model were performed in order to compare the dynamic amplification factors of the design described in this paper with the classical one. A functional prototype is built on which drone pilots carry out a comfort-of-use evaluation. This paper provides a general overview of the project, including a literature review, reasoning behind components selection, and mechanism design finalized by conclusions.

Keywords: mechanisms, mechatronics, embedded control, serious gaming for training rescue missions, rescue robotics

Procedia PDF Downloads 10
6983 Determining the Mode II Intra Ply Energy Release Rate of Composites Made of Prepreg

Authors: Philip Rose, Markus Linke, David Busquets


The distinction between interlaminar and intralaminar fracture toughness has already been investigated by several authors. For loading mode I, the double cantilever beam specimens were often used for the interlaminar fracture toughness and the compact tension specimen for the intralaminar fracture toughness. In order to minimize the influence of the different specimen geometries, a method was developed which allows the determination of both the interlaminar and the intralaminar fracture toughness on an almost identical specimen geometry. However, as this method is not applicable to prepreg semi-finished products, a further modification was developed, which is also suitable for prepreg laminates. After the successful application for the investigation of mode I with this method, the application of the method for loading mode II is presented in this paper. In addition to manufacturing differences, due to an additional fiber ply in which the controlled crack growth takes place, the adapted test procedure is also explained. By comparing the test results of standardized end-notched flexure (ENF) specimens with those of the modified ENF specimen, the difference between the interlaminar and intralaminar fracture toughness of the material Hexply 8552/IM7 is shown.

Keywords: ENF, fracture toughness, interlaminar, intralaminar, Mode II

Procedia PDF Downloads 7
6982 Numerical Crashworthiness Investigations of a Full-Scale Composite Fuselage Section

Authors: Redouane Lombarkia


To apply a new material model developed and validated for plain weave fabric CFRP composites usually used in stanchions in sub-cargo section in aircrafts. This work deals with the development of a numerical model of the fuselage section of commercial aircraft based on the pure explicit finite element method FEM within Abaqus/Explicit commercial code. The aim of this work is the evaluation of the energy absorption capabilities of a full-scale composite fuselage section, including sub-cargo stanchions, Drop tests were carried out from a free fall height of about 5 m and impact velocity of about 6 m∕s. To asses, the prediction efficiency of the proposed numerical modeling procedure, a comparison with literature existed experimental results was performed. We demonstrate the efficiency of the proposed methodology to well capture crash damage mechanisms compared to experimental results

Keywords: crashworthiness, fuselage section, finite elements method (FEM), stanchions, specific energy absorption SEA

Procedia PDF Downloads 17
6981 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter

Authors: Jiri Cecrdle


This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.

Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator

Procedia PDF Downloads 15
6980 Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties

Authors: L. Gyansah, Yanfang Shen, Jiqiang Wang, Tianying Xiong


SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed.

Keywords: cold spraying, hot deformation, deformation temperature, thermomechancal properties, SiC/Al composite

Procedia PDF Downloads 18
6979 Study on Accurate Calculation Method of Model Attidude on Wind Tunnel Test

Authors: Jinjun Jiang, Lianzhong Chen, Rui Xu


The accurate of model attitude angel plays an important role on the aerodynamic test results in the wind tunnel test. The original method applies the spherical coordinate system transformation to obtain attitude angel calculation.The model attitude angel is obtained by coordinate transformation and spherical surface mapping applying the nominal attitude angel (the balance attitude angel in the wind tunnel coordinate system) indicated by the mechanism. First, the coordinate transformation of this method is not only complex but also difficult to establish the transformed relationship between the space coordinate systems especially after many steps of coordinate transformation, moreover it cannot realize the iterative calculation of the interference relationship between attitude angels; Second, during the calculate process to solve the problem the arc is approximately used to replace the straight line, the angel for the tangent value, and the inverse trigonometric function is applied. Therefore, in the calculation of attitude angel, the process is complex and inaccurate, which can be solved approximately when calculating small attack angel. However, with the advancing development of modern aerodynamic unsteady research, the aircraft tends to develop high or super large attack angel and unsteadyresearch field.According to engineering practice and vector theory, the concept of vector angel coordinate systemis proposed for the first time, and the vector angel coordinate system of attitude angel is established.With the iterative correction calculation and avoiding the problem of approximate and inverse trigonometric function solution, the model attitude calculation process is carried out in detail, which validates that the calculation accuracy and accuracy of model attitude angels are improved.Based on engineering and theoretical methods, a vector angel coordinate systemis established for the first time, which gives the transformation and angel definition relations between different flight attitude coordinate systems, that can accurately calculate the attitude angel of the corresponding coordinate systemand determine its direction, especially in the channel coupling calculation, the calculation of the attitude angel between the coordinate systems is only related to the angel, and has nothing to do with the change order s of the coordinate system, whichsimplifies the calculation process.

Keywords: attitude angel, angel vector coordinate system, iterative calculation, spherical coordinate system, wind tunnel test

Procedia PDF Downloads 16
6978 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites

Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan


All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.

Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite

Procedia PDF Downloads 14
6977 Longitudinal Static and Dynamic Stability of a Typical Reentry Body in Subsonic Conditions Using Computational Fluid Dynamics

Authors: M. Jathaveda, Joben Leons, G. Vidya


Reentry from orbit is a critical phase in the entry trajectory. For a non-propulsive ballistic entry, static and dynamic stability play an important role in the trajectory, especially for the safe deployment of parachutes, typically at subsonic Mach numbers. Static stability of flight vehicles are being estimated through CFD techniques routinely. Advances in CFD software as well as computational facilities have enabled the estimation of the dynamic stability derivatives also through CFD techniques. Longitudinal static and dynamic stability of a typical reentry body for subsonic Mach number of 0.6 is predicted using commercial software CFD++ and presented here. Steady state simulations are carried out for α = 2° on an unstructured grid using SST k-ω model. Transient simulation using forced oscillation method is used to compute pitch damping derivatives.

Keywords: stability, typical reentry body, subsonic, static and dynamic

Procedia PDF Downloads 15
6976 Emerging Technologies in European Aeronautics: How Collaborative Innovation Efforts Are Shaping the Industry

Authors: Nikola Radovanovic, Petros Gkotsis, Mathieu Doussineau


Aeronautics is regarded as a strategically important sector for European competitiveness. It was at the heart of European entrepreneurial development since the industry was born. Currently, the EU is the world leader in the production of civil aircraft, including helicopters, aircraft engines, parts, and components. It is recording a surplus in trade relating to aerospace products, which are exported all over the globe. Also, this industry shows above-average investments in research and development, as demonstrated in the patent activity in this area. The post-pandemic recovery of the industry will partly depend on the possibilities to streamline collaboration in further research and innovation activities. Aeronautics features as one of the often selected priority domains in smart specialisation, which represents the main regional and national approach in developing and implementing innovation policies in Europe. The basis for the selection of priority domains for smart specialisation lies in the mapping of innovative potential, with research and patent activities being among the key elements of this analysis. This research is aimed at identifying characteristics of the trends in research and patent activities in the regions and countries that base their competitiveness on the aeronautics sector. It is also aimed at determining the scope and patterns of collaborations in aeronautics between innovators from the European regions, focusing on revealing new technology areas that emerge from these collaborations. For this purpose, we developed a methodology based on desk research and the analysis of the PATSTAT patent database as well as the databases of R&I framework programmes.

Keywords: aeronautics, smart specialisation, innovation, research, regional policy

Procedia PDF Downloads 16
6975 Connected Care Medical Module: Transforming Healthcare on Earth and in Space

Authors: Annie Martin, Tristan Richmond, Charlotte Pearce


The Canadian Space Agency's (CSA) Health Beyond Initiative aims to collaboratively identify and develop innovative and sustainable medical solutions in order to improve the healthcare delivery model currently used in low-Earth orbit and address the additional and heightened healthcare challenges to be faced by astronauts traveling to farther destinations. The transformative approach proposed with the Connected Care Medical Module (C²M²) is one that is predictive, proactive, and that increases on-site medical capacity and autonomy. The C²M² will include a core computer-based system to facilitate the incorporation, interconnection, and utilization of the latest medical technologies. The system’s plug and play architecture will enable the C²M² to operate in multiple configurations and adapt to the end users' needs. These cutting-edge medical technology incorporated in the C²M² will increase the user's capacity to independently detect, diagnose, treat, and/or monitor health conditions on-site. This aims to improve the timeliness, quality, and continuity of care; to refine clinical decision-making, and to reduce the occurrence of risky and expensive medical evacuations. The objective is to equip and empower crews to manage their health throughout long duration missions to distant destinations. With strategic national and international actors, the co-creation, co-operation, and co-iteration of such a novel healthcare approach will primarily occur on Earth to prepare for eventual implementation in deep space missions. This will dually serve to address today's inequalities in healthcare access across Canada and demonstrate capabilities to international space partners. This paper focuses on the flexible framework approach of the C²M²; the first prototypes delivered to the CSA in 2023, and how CSA is envisioning the development of a deep space healthcare system.

Keywords: human spaceflight, integrated medical system, medical autonomy, exploration

Procedia PDF Downloads 10
6974 Airplane Stability during Climb/Descend Phase Using a Flight Dynamics Simulation

Authors: Niloufar Ghoreishi, Ali Nekouzadeh


The stability of the flight during maneuvering and in response to probable perturbations is one of the most essential features of an aircraft that should be analyzed and designed for. In this study, we derived the non-linear governing equations of aircraft dynamics during the climb/descend phase and simulated a model aircraft. The corresponding force and moment dimensionless coefficients of the model and their variations with elevator angle and other relevant aerodynamic parameters were measured experimentally. The short-period mode and phugoid mode response were simulated by solving the governing equations numerically and then compared with the desired stability parameters for the particular level, category, and class of the aircraft model. To meet the target stability, a controller was designed and used. This resulted in significant improvement in the stability parameters of the flight.

Keywords: flight stability, phugoid mode, short period mode, climb phase, damping coefficient

Procedia PDF Downloads 30
6973 Investigation of Flow Effects of Soundwaves Incident on an Airfoil

Authors: Thirsa Sherry, Utkarsh Shrivastav, Kannan B. T., Iynthezhuton K.


The field of aerodynamics and aeroacoustics remains one of the most poignant and well-researched fields of today. The current paper aims to investigate the predominant problem concerning the effects of noise of varying frequencies and waveforms on airflow surrounding an airfoil. Using a single speaker beneath the airfoil at different positions, we wish to simulate the effects of sound directly impinging on an airfoil and study its direct effects on airflow. We wish to study the same using smoke visualization methods with incense as our smoke-generating material in a variable-speed subsonic wind tunnel. Using frequencies and wavelengths similar to those of common engine noise, we wish to simulate real-world conditions of engine noise interfering with airflow and document the arising trends. These results will allow us to look into the real-world effects of noise on airflow and how to minimize them and expand on the possible relation between waveforms and noise. The parameters used in the study include frequency, Reynolds number, waveforms, angle of attack, and the effects on airflow when varying these parameters.

Keywords: engine noise, aeroacoustics, acoustic excitation, low speed

Procedia PDF Downloads 22
6972 Preliminary Design Considerations for Achieving Stabilized Orbit, Telemetary, Command, and Ranging for HTS Communication Satellite

Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Samson Olufunmilayo Abodunrin, Muhammad Dokko Zubairu, Moshood Kareem


This paper discusses the consideration and trade-offs used for the implementation of robust systems for orbit stability; Telemetry, Command and Ranging (TC& R) for Nigcomsat-1R and applicability for planned NigComSat-2 satellites. NigComSat-1R satellite was built by China Academy of Space Technology (CAST). The Satellite designed with quad-band payload (L, C, Ku, and Ka) was launched on the 20th of December 2011. The functionality of all satellite is driven by robust systems including Attitude & Orbit Control System (AOCS) and TC&R. The planned Nigcomsat-2 is a high throughput Satellite expected to function with better AOCS and TC&R.

Keywords: AOCS, CAST, Nigcomsat-1R, TC&R

Procedia PDF Downloads 16
6971 Nigcomsat-1r and Planned HTS Communication Satellite Critical Pillars for Nigeria’s National Digital Economy Policy and Strategy

Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Moshood Kareem, Samson Olufunmilayo Abodunrin, Muhammad Dokko Zubairu


The National Digital Economy Policy and Strategy, NDEPS document developed by Nigeria’s Federal Ministry of Communications & Digital Economy (FMoCDE) is anchored on 8 pillars for the acceleration of the National Digital Economy for a Digital Nigeria. NIGCOMSAT-1R and the planned HTS communication Satellite are critical assets for supporting the pillars in the drive for sustainable growth and development. This paper discusses on the gains and contribution of the strategy as a solid infrastructure. The paper also highlights these assets’ contribution as platform for Indigenous Content Development & Adoption, Digital Literacy & Skills, and Digital Services Development & Promotion.

Keywords: FMoCDE, HTS, NDEPS, nigcomsat!R, pillars

Procedia PDF Downloads 15
6970 Quantitative Risk Analysis for Major Subsystems and Project Success of a Highthrouput Satellite

Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Babadoko Dantala Mohammed, Moshood Kareem Olawole


This paper dwells on the risk management required for High throughput Satellite (HTS) project, and major subsystems that pertains to the improved performance and reliability of the spacecraft. The paper gives a clear picture of high‐throughput satellites (HTS) and the associated technologies with performances as they align and differ with the traditional geostationary orbit or Geosynchronous Equatorial Orbit (GEO) Communication Satellites. The paper also highlights critical subsystems and processes in project conceptualization and execution. The paper discusses the configuration of the payload. The need for optimization of resources for the HTS project and successful integration of critical subsystems for spacecraft requires implementation of risk analysis and mitigation from the preliminary design stage; Assembly, Integration and Test (AIT); Launch and in-orbit- Management stage.

Keywords: AIT, HTS, in-orbit management, optimization

Procedia PDF Downloads 17
6969 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn


Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 28
6968 A Discrete Event Simulation Model For Airport Runway Operations Optimization (Case Study)

Authors: Awad Khireldin, Colin Law


Runways are the major infrastructure of airports around the world. Efficient operations of runways are key to ensure that airports are running smoothly with minimal delays. There are many factors that affect the efficiency of runway operations, such as the aircraft wake separation, runways system configuration, the fleet mix, and the runways separation distance. This paper aims to address how to maximize runway operations using a Discrete Event Simulation model. A case study of Cairo International Airport (CIA) is developed to maximize the utilizing of three parallel runways using a simulation model. Different scenarios have been designed where every runway could be assigned for arrival, departure, or mixed operations. A benchmarking study was also included to compare the actual to the proposed results to spot the potential improvements. The simulation model shows that there is a significant difference in utilization and delays between the actual and the proposed ones, there are several recommendations that can be provided to airport management, in the short and long term, to increase the efficiency and to reduce the delays. By including the recommendation with different operations scenarios, such as upgrading the airport slot Coordination from Level 1 to Level 2 in the short term. In the long run, discuss the possibilities to increase the International Air Transport association (IATA) slot coordination to Level 3 as more flights are expected to be handled by the airport. Technological advancements such as radar in the approach full airside simulation model could improve the airport performance where the airport is recommended to review the standard operations procedures with the appropriate authorities. Also, the airport can adopt a future operational plan to accommodate the forecasted additional traffic density in case of adding a fourth terminal building to increase the airport capacity.

Keywords: airport performance, runway, discrete event simulation, capacity, airside

Procedia PDF Downloads 32