Synthesis of Highly Stable Near-Infrared FAPbI₃@TEOS Perovskite and its Applications in NIR Light-Emitting Diodes for Bioimaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 85205
Synthesis of Highly Stable Near-Infrared FAPbI₃@TEOS Perovskite and its Applications in NIR Light-Emitting Diodes for Bioimaging

Authors: Nasrud Din, Fawad Saeed, Sajid Hussain, Rai Muhammad Dawoo, Qasim Khan, Lei Wei

Abstract:

The continuously increasing external quantum efficiencies of Perovskite light-emitting diodes (LEDs) have received significant interest in the scientific community. The need for monitoring and medical diagnostics has experienced a steady growth in recent years, primarily caused by older people and an increasing number of heart attacks, tumors, and cancer disorders among patients. The application of Perovskite near-infrared light-emitting diode (PeNIRLEDs) has exhibited considerable efficacy in bioimaging, particularly in the visualization and examination of blood arteries, blood clots, and tumors. PeNIRLEDs exhibit exciting potential in the field of blood vessel imaging because of their advantageous attributes, including improved depth penetration and less scattering in comparison to visible light. In this study, we synthesized FAPbI₃ Perovskite doped with different concentrations of 5-Aminovaleric acid (5-AVA) 1-6 mg. The incorporation of 5-AVA as a dopant during the FAPbI₃ Perovskite formation influences the FAPbI3 Perovskite’s structural and optical properties. While improving the FAPbI3 Perovskite’s stability, photoluminescence efficiency, and charge transport characteristics. We found a resulting PL emission peak wavelength of 850 nm and bandwidth of 44 nm, along with a calculated quantum yield of 75%. The incorporation of 5-AVA-modified FAPbI₃ Perovskite into LEDs will show promising results, enhancing device efficiency, color purity, and stability. Making it suitable for various medical applications, including subcutaneous deep vein imaging, blood flow visualization, and tumor illumination.

Keywords: FAPbI₃ perovskite, near-infrared light-emitting diode, bioimaging, blood flow visualization, radiance, light-emitting diode (LED).

Procedia PDF Downloads 17