An Overview of Nano-Particles Effect on Mechanical Properties of Composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
An Overview of Nano-Particles Effect on Mechanical Properties of Composites

Authors: Olatunde I. Sekunowo, Stephen I. Durowaye, Ganiyu I. Lawal

Abstract:

Composites depending on the nature of their constituents and mode of production are regarded as one of the advanced materials that drive today’s technology. This paper attempts a short review of the subject matter with a general aim of pushing to the next level the frontier of knowledge as it impacts the technology of nano-particles manufacturing. The objectives entail an effort to; aggregate recent research efforts in this field, analyse research findings and observations, streamline research efforts and support industry in taking decision on areas of fund deployment. It is envisaged that this work will serve as a quick hand-on compendium material for researchers in this field and a guide to relevant government departments wishing to fund a research whose outcomes have the potential of improving the nation’s GDP.

Keywords: Advanced materials, Composites, Mechanical properties, Nano-particles.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1097327

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4519

References:


[1] C. Buzea, I.I.P. Blandino, and K. Robbie, ‘‘Nanomaterials and Nanoparticles: Sources and Toxicity,’’ Biointerphases, vol. 2, issue 4, 2007, pp. 17-172.
[2] D.B. Kittelson, ‘‘Recent measurements of nanoparticle emission from engines,’’ Current Research on Diesel Exhaust Particles,Japan Association of Aerosol Science and Technology, Tokyo,Japan, 9th January, 2001.
[3] P.J.A. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R.P.F. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, and E. Oberdorster, ‘‘The Potential Risks of Nanomaterials,’’ A Review carried out for ECETOC (review) Part. Fibre Toxicol. 3, 2006, pp. 11.
[4] S. Ranđelović, A.R. Zarubica, and M.M. Purenović, ‘‘New Composite Materials in the Technology for Drinking Water Purification from Ionic and Colloidal Pollutants,’’http://dx.doi.org/10.5772/48390, 2012.
[5] M. Inkyo, T. Tahara, and Y. Imajyo, ‘‘New Nanoparticles Dispersing Beads Mill with Ultra Small Beads and its Application,’’ IOP Conf. Series: Materials Science and Engineering 18 062002, 2011.
[6] G. Xanthopoulou, and G. Vekinis, "An Overview of Some Environmental Applications of Self-Propagating High-Temperature Synthesis," Advances in environmental research, vol. 5, 2001, pp. 117- 128.
[7] M. N. Rahaman, ‘‘Ceramic Processing,’’ Boca Raton, Fl: Taylor and Francis Group, 2007.
[8] X. Q. You, T. Z. Si, P. P. Ren, Y. D. Xu, and J. P. Feng, "Effect of Grain Size on Thermal Shock Resistance of Al2O3–Tic Ceramics,’’ Ceramics International, vol. 31, no. 1, 2005, pp. 33-38.
[9] W. Garrett, ‘‘Control of Self-Propagating High-Temperature Synthesis Derived Aluminum-Titanium Carbide Metal Matrix Composites,’’ Golden PhD thesis, Colorado School of Mines, 2012.
[10] J. J. Moore, Interviewee, Private communication. (Interview), June, 2010.
[11] A. S. Rogachev, and F. Baras, "Models of SHS: An overview," International Journal of Self-Propagating High-temperature Synthesis, vol. 16, 2007, pp. 141-153.
[12] M.M.A. Rafique, J. Iqbal, ‘‘Production of Carbon Nanotubes by Different Routes - A Review,’’ Journal of Encapsulation and Adsorption Sciences, vol 1, 2011, pp. 29-34.
[13] J. Prasek, J. Drbohlavova, J, Chomoucka, J. Hubalek, O. Jasek, V. Adamc, and R. Kizek, ‘‘Methods for Carbon Nanotubes Synthesis Review,’’ Journal of Materials Chemistry, J. Mater. Chem, 21, 2011, pp. 15872.
[14] A. Merkoci, ‘‘Biosensing Using Nanomaterials,’’ ed. Wiley, New Jersey, 2009.
[15] C. Laurent, E. Flahaut, and A. Peigney, Carbon, 48, 2010, pp. 2994- 2996.
[16] Z. B. He, J. L. Maurice, C. S. Lee, C. S. Cojocaru, and D. Pribat, Arabian J. Sci. Eng., Sect. B, 35, 2010, pp. 19-28.
[17] J. H. Ting, J. Y. Lyu, F. Y. Huang, T. L. Li, C. L. Hsu, and C. W. Liu, IEEE 17th Biennial University/Government/Industry Micro- Nano Symposium, Proceedings IEEE, New York, 2008, pp. 157- 160.
[18] C. J. Unrau, R. L. Axelbaum, and C. S. Lo, J. Phys. Chem. C, 114, 2010, pp. 10430- 10435.
[19] S. A. Steiner, T. F. Baumann, B. C. Bayer, R. Blume, M. A. Worsley, W. J. MoberlyChan, E. L. Shaw, R. Schlogl, A. J. Hart, S. Hofmann, and B. L. Wardle, J. Am. Chem. Soc., 131, 2009, pp. 12144-12154.
[20] H. Tempel, R. Joshi, and J. J. Schneider, Mater. Chem. Phys., 121, 2010, pp. 178–183.
[21] H. R. Byon, H. Lim, H. J. Song, and H. C. Choi, Korean Chem.Soc., 28, 2007, pp. 2056–2060.
[22] Y. M. Chen, and H. Y. Zhang, in Advances in Composites, ed. J. L.Bu, Z. Y. Jiang and S. Jiao, Trans Tech Publications Ltd,Stafa-Zurich, Pts., 1 and 2, 2011, pp. 1560–1563.
[23] B. Brown, C. B. Parker, B. R. Stoner, and J. T. Glass, Carbon, 49,2011, pp. 266–274.
[24] Y. Xu, E. Dervishi, A. R. Biris, and A. S. Biris, Mater. Lett., 65,2011, pp. 1878–1881.
[25] Y. J. Zhu, T. J. Lin, Q. X. Liu, Y. L. Chen, G. F. Zhang, H. F.Xiong, and H. Y. Zhang, Mater. Sci. Eng., B, 127, 2006, pp. 198- 202.
[26] N. Fotopoulos, and J. P. Xanthakis, Diamond Relat. Mater., 19,2010, pp. 557-561.
[27] O. Lee, J. Jung, S. Doo, S. S. Kim, T. H. Noh, K. I. Kim, and Y. S.Lim, Met. Mater. Int., 16, 2010, pp. 663-667.
[28] R. Sharma, S. W. Chee, A. Herzing, R. Miranda, and P. Rez, Nano Lett., 11, 2011, pp. 2464-2471.
[29] M. Palizdar, R. Ahgababazadeh, A. Mirhabibi, R. Brydson, and S.Pilehvari, J. Nanosci.Nanotechnol, 11, 2011, pp. 5345-5351.
[30] T. Tomie, S. Inoue, M. Kohno, and Y. Matsumura, Diamond Relat. Mater., 19, 2010, pp. 1401-1404.
[31] U. Narkiewicz, M. Podsiadly, R. Jedrzejewski, and I. Pelech, Appl.Catal., A, 384, 2010, pp. 27-35.
[32] D. L. He, H. Li, W. L. Li, P. Haghi-Ashtiani, P. Lejay, and J. B. Bai,Carbon, 49, 2011, pp. 2273-2286.
[33] G. Atthipalli, R. Epur, P. N. Kumta, M. J. Yang, J. K. Lee, and J. L.Gray, J. Phys. Chem. C, 115, 2011, pp. 3534-3538.
[34] S. Santangelo, G. Messina, G. Faggio, M. Lanza, A. Pistone, and C.Milone, J. Mater. Sci., 45, 2011, pp. 783-792.
[35] B. Hou, R. Xiang, T. Inoue, E. Einarsson, S. Chiashi, J. Shiomi, A.Miyoshi, and S. Maruyama, Jpn. J. Appl. Phys., 50, 2011, pp. 4.
[36] B. Skukla, T. Saito, S. Ohmori, M. Koshi, M. Yumura, and S. Iijima,Chem. Mater., 22, 2010, pp. 6035-6043.
[37] A. Szabo, C. Perri, A. Csato, G. Giordano, D. Vuono, and J. B.Nagy, Materials, 3, 2010, pp. 3092-3140.
[38] H. Byeon, S. Y. Kim, K. H. Koh, and S. Lee, J. Nanosci.Nanotechnol, 10, 2010, pp. 6116-6119.
[39] V. A. Nebol’sin, and A. Y. Vorob’ev, Inorg. Mater, 47, 2011, pp. 128- 132.
[40] J. Lara-Romero, J. C. Calva-Yanez, J. Lopez-Tinoco, G. Alonso-Nunez, S. Jimenez-Sandoval, and F. Paraguay-Delgado, Fullerenes, Nanotubes, Carbon Nanostruct, 19, 2011, pp. 483- 496.
[41] R. Kumar, R. S. Tiwari, and O. N. Srivastava, Nanoscale Res. Lett.,6, 2011, pp. 6.
[42] S. Paul, and S. K. Samdarshi, New Carbon Mater., 26, 2011, pp. 85-88.
[43] M. I. Ionescu, Y. Zhang, R. Li, X. Sun, H. Abou-Rachid, and L.S.Lussier, Appl. Surf. Sci., 257, 2011, pp. 6843-6849.
[44] G. Kucukayan, R. Ovali, S. Ilday, B. Baykal, H. Yurdakul, S. Turan, O. Gulseren, and E. Bengu, Carbon, 49, 2011, pp. 508–517.
[45] C. Clauss, M. Schwarz, and E. Kroke, Carbon, 48, 2010, pp. 1137- 1145.
[46] Y. C. Liu, N. N. Zheng, J. D. Huang and B. M. Sun, Advanced Polymer Science and Engineering, ed. C. H. Wang, L. X. Ma, and W. Yang,Trans Tech Publications Ltd, Stafa-Zurich, 2011, pp. 99–103.
[47] Y. C. Liu, B. M. Sun, and Z. Y. Ding, Advanced Polymer Scienceand Engineering, ed. C. H. Wang, L. X. Ma and W. Yang, Trans Tech Publications Ltd, Stafa-Zurich, 2011, pp. 235-239.
[48] R. Jasti, and C. R. Bertozzi, Chem. Phys. Lett., 494, 2010, p. 1-7.
[49] Z. Ren, and S. Chen, ‘‘Mechanical Properties of NanometricParticulates Reinforced Aluminum Composites,’’ http://www.materials.unsw.edu.au/NanoWeb
[50] S.M. Zebarjad, S.A, Sajjadi and E.Z. Vahid Karimi, ‘‘Influence ofNanosized Silicon Carbide on Dimensional Stability of Al/SicNanocomposite,’’ Research Letter in Material Science, Article ID835746, 2008.
[51] L. Fischer, ‘‘Nano-Dispersion Strengthening of Aluminum,” Introduction to Research, Literature Survey Report, University of Colorado, 2004.
[52] P.E.C. Camargo, K.G. Satyanarayama, and F. Wypych, “Nanocomposites: Synthesis, Structure, Properties and Opportunities,” Material Research, 12, 1, 2009, pp. 1-39.
[53] I. Kruusenberg, N. Alexeyeva, K. Tammeveski, J. Kozlova, L.Matisen, V. Sammelselg, J. Solla-Gull, and J. M. Feliu, Carbon, 49, 2011, pp. 4031-4039.
[54] N. M. Mubarak, F. Yusof, and M. F. Alkhatib, Chem. Eng. J.(Amsterdam, Neth.), 168, 2011, pp. 461-469.
[55] C. Borgonovo, ‘‘Aluminum Nanocomposite Materials for High Temperature Application,’’ Chapter II, Literature Review, University of Bologna, 2009.
[56] Zhang and Chen, “Consideration of Orowan Strengthening Effectin Particulate-Reinforced Metal Matrix Nanocomposites: A Modelfor Predicting Their Yield Strength,” Scripta Materialia 54, 2006,pp. 1321- 1326.
[57] C. Li, E.T. Ostenson, and T.W. Chou, ‘‘Sensors and Actuators Based on Carbon Nanotubes and their Composites: A Review,’’ Composites Sci. Technol. 68, 2008, pp. 1227-1249.
[58] D.L. Shi, X.Q. Feng, Y.G.Y. Huang, K.C. Hwang, and H.J. Gao, ‘‘The Effect of Nanotube Waviness and Agglomeration on theElastic Property of Carbon Nanotube-Reinforced Composites,’’ J. Eng. Mater. Technol, 126, 2004, pp. 250-257.