Abstract—Power quality has become a very important issue recently due to the impact on electricity suppliers, equipment manufacturers and customers. Power quality is described as the variation of voltage, current and frequency in a power system. Voltage magnitude is one of the major factors that determine the quality of power. Indeed, custom power technology, the low-voltage counterpart of the more widely known flexible ac transmission system (FACTS) technology, aimed at high-voltage power transmission applications, has emerged as a credible solution to solve many problems relating to power quality problems. There are various power quality problems such as voltage sags, swells, flickers, interruptions and harmonics etc. Active Power Filter (APF) is one of the custom power devices and can mitigate harmonics, reactive power and unbalanced load currents originating from load side. In this study, an extensive review of APF studies, the advantages and disadvantages of each introduced methods are presented. The study also helps the researchers to choose the optimum control techniques and power circuit configuration for APF applications.

Keywords—Power Quality, Custom Power, Active Filter, Control Approach.

I. INTRODUCTION

POWER electronics based devices/equipments are a major key component of today’s modern power processing, at the transmission as well as the distribution level because of the numerous advantages offered by them. These devices, equipments, nonlinear load including saturated transformers, arc furnaces and semiconductor switches and so on, draw non-sinusoidal currents from the utility. Therefore a typical power distribution system has to deal with harmonics and reactive power support [1].

The presence of harmonics and reactive power in the grid is harmful, because it will cause additional power losses and malfunctions of the grid components [2]. Conventionally, passive filters consisting of tuned L-C components have been widely used to suppress harmonics because of their low initial cost and high efficiency. However, passive filters have many disadvantages, such as large size, mistuning, instability and resonance with load and utility impedances [3]. Active Power Filters have become an alternative solution for controlling current harmonics in supply networks at the low to medium voltage distribution level or for reactive power and/or voltage control at high voltage distribution level [4].

Active power filters such as shunt APFs, series APFs, hybrid APFs, unified power quality conditioner (UPQC) and other combinations have made it possible to mitigate some of the major power quality problems [1].

APF system can be divided into two sections as given in Fig. 1. The control unit and the power circuit and the control unit consist of reference signal generation, gate signal generation, and capacitor voltage balance control and voltage/current measurement. Power circuit of APF is generally comprised of energy storage unit, DC/AC converter, harmonic filter and system protection.

The findings of the comprehensive literature survey summarize the available studies related with the control unit and the power circuit of the APF.

II. POWER CIRCUIT OF APF

APFs are basically categorized into four types, namely, two-wire (single-phase) [5], three-phase three-wire [3], three-phase three-wire with Zig–Zag transformer [6] and three-phase four-wire [7] configurations to meet the requirements of the various types of nonlinear loads on supply systems [8]. Basic topologies of APF are shown in Fig. 2.

(a) 3-phase 3-wire and 3-phase 4-wire topology
APFs are used in low power (<100 kVA), medium power (100 kVA-10 MVA) and high power (>10 MVA) applications [4]. For low power applications, APFs can be applied for single-phase and three-phase systems. For single-phase systems, APFs generally mitigate the current harmonics. For three-phase systems, APFs generally provide acceptable solution for unbalanced load currents and mitigate the current harmonics. For medium power applications, the main aim is to eliminate or reduce the current harmonics. Because of economic considerations, reactive power compensation using active filters at the high voltage distribution level is not generally regarded as viable [4]. For high power applications, the harmonic pollution in high-power ranges is not such a major problem as in lower-power systems. One of the few applications of active filters in high power systems is the installation of parallel combination of several active filters because the control and co-ordination requirements of these filters are complicated. The power circuit of APF generally consists of DC energy storage unit, DC/AC converter and passive filter.

A. DC Energy Storage

The DC capacitor serves two main purposes: (1) It maintains a DC voltage with a small ripple in steady state and (2) It serves as an energy storage element to supply the real power deference between load and source during the transient period [9]. DC link voltage should be higher than maximum peak of the source voltage. DC link voltage can be controlled using proportional-integral (PI) controller [10], proportional-integral-derivative (PID) controller [11] and fuzzy logic [12]. In [3], DC link is fed from separate voltage source to stabilize DC-side voltage within a certain range. Switched capacitor APF that brings new dimension to APF as it reduces components and ratings (particularly capacitor) while performing at low switching frequency is evaluated in [13]. DC link, instead of a capacitor, is used as a battery pack, which is charged from a photovoltaic array in [14].

B. DC/AC Converter

The converter types of APF can be either Current Source Inverter or Voltage Source Inverter (VSI) bridge structure. VSI structures with insulated gate bipolar transistors (IGBTs) or gate turn-off thyristors (GTO) have become more dominant, since it is lighter, cheaper and expandable to multilevel and multi step versions, to enhance the performance with lower switching frequencies [8]. IGBTs are generally used up to 1 MVA rating, GTO thyristors are generally used higher than 1 MVA rating.

Power circuit configuration of APFs can be parallel active filter [15], series active filter [16] and combination of series and parallel filters [4], [8]. The purpose of parallel active filters is to cancel the load current harmonics fed to the supply. It can also perform the reactive power compensation and balancing of three-phase currents. The series active filter produces a PWM voltage waveform which is added/subtracted to/from the supply voltage to maintain a pure sinusoidal voltage waveform across the load. However, series active filters are less common industrially than their rivals, parallel active filters [8]. Combinations of several types of filter can achieve greater benefits for some applications.

The examined combinations are combination of both parallel and series active filters, combination of series active and parallel passive filters, combination of parallel active and passive filters [17] and active filter in series with parallel passive filters [18]. Seven-level APF configuration is also examined in [19], [20]. Multilevel three-leg center-split VSIs are more preferable in medium and large capacity applications due to lower initial cost and fewer switching devices that need to be controlled [21]. The series-stacked-multilevel-converter topology, which allows standard three-phase inverters to be connected with their DC busses in series, is chosen in [22]. This converter has both regenerated energy generation and active power filtering capabilities.

C. Harmonic Filter

An inductance for output filtering of VSI is used to eliminate the harmonic at different frequencies. The different combinations of L and C filters to attenuate the switching ripple currents are examined in [23]. A rectifier employing phase control with extra low inductance characteristic or load which high-frequency input current, may affect the APF and causing it to malfunction or shutdown. While APF is being applied to this type of load, a reactor (3% ~ 5%) is recommended to install at the input side of the load to reduce the rising rate of load input current [24]. LC passive filter is used in [3] for harmonic elimination and reactive power compensation. LCL-filter presented in [25] gives advantages in costs and dynamic performance since smaller inductors can be used compared to...
L-filter in order to achieve the necessary damping of the
switching harmonics.

III. CONTROL TECHNIQUES

Active power filters are generally designed to compensate
the current harmonics, reactive power, and voltage harmonics
and to balance the mains current and voltage. Control strategy
is based on the overall system control, extraction of reference
signal, capacitor voltage balance control and generation of
gating signals as shown in Fig. 3.

![Fig. 3 Control unit of APF with a specified power circuit topology](image)

Fig. 3 Control unit of APF with a specified power circuit topology

The general control techniques to overcome these power
quality disturbances are open loop control system and closed
loop control system. The closed loop controls can be further
subdivided into other techniques as constant capacitor voltage
technique, constant inductor current technique, optimization
techniques and linear voltage control technique [4].

Classification according to current/voltage reference
estimation techniques can be made as time domain control and
frequency domain control that are processed by the open loop
or closed loop control techniques [4]. Control strategy in the
frequency domain is based on the Fourier analysis of the
distorted voltage or current signals to extract compensating
current/voltage reference [8]. Frequency domain approaches
are suitable for both single and three-phase systems. The
frequency domain algorithms are conventional Fourier and fast
Fourier transform (FFT) algorithms [26], sine multiplication
technique [4] and modified Fourier series techniques [27].

Control methods of the APF’s in the time domain are based
on instantaneous derivation of compensating commands in the
form of either voltage or current signals from distorted and
harmonic polluted voltage or current signals [8]. Time domain
approaches are mainly used for three-phase systems. The time
domain algorithms are neural network [13], constant active
power algorithm, constant (unity) power factor algorithm [15],
DQ method [26], instantaneous reactive power algorithm (p-q)
[28], fictitious power compensation algorithm [29] and
synchronous flux detection algorithm [30]. A component which
has a frequency between the two frequencies is called an
inter-harmonic. A method for real-time detection and
extraction of inter-harmonic components in a power signal with
potentially time-varying characteristics is presented in [31].

The measurements of supply voltage, load current, injected
current and capacitor voltage are required for reactive current
extraction [28]. However, the measurements of load current,
injected current and capacitor voltage is enough for only
harmonic current extraction in [32]. In [33], there is no need to
measure the load current or power to calculate the reference
currents.

The switching signals for the solid state devices of the APF
are generated using deadbeat [5], hysterisis [7], PWM [19],
multi-resonant controller [34], space vector modulation (SVM)
[35], sliding-mode [36] or fuzzy logic based control techniques
[37]. The capacitor voltage balance control is performed using
PI controller [38], Artificial Neural Network (ANN) based
adaptive PI controller [39], fuzzy controller [40] and SVM [41]
methods.

IV. CONCLUSIONS

Active Power Filter can mitigate some types of power
quality disturbances such as harmonics, reactive power and
unbalanced load currents. These disturbances can cause
disoperation of highly automated systems and malfunction of
sensitive loads connected to point of common coupling (PCC)
which increases the economical cost of fault. APF can be very
effective solution such a high technology industrial plants or
the group of customers having sensitive loads in Custom Power
Park or Power Quality Park. This paper has been mainly
concentrated on the converter topologies and the control
algorithms. A number of APF topologies have been reviewed.
With this study, the findings about APF studies in the literature
and the application notes of APF in service are presented and
thus the trends of APF through the years are clearly observed.

REFERENCES

time theory for active power filtering: simulation and DSP-based experimental
and reactive power compensation”, Industrial Electronics, IEEE
active power filter algorithms,” International Journal of Computer and
of voltage unbalance and current harmonics with a series active power
with a sampling frequency quadruple of the switching frequency”, Power
power filter comprising a three-phase three-wire active power filter and a
for three-phase four-wire systems”, Power Electronics, IET, 2: 216-226,
2009.
shunt hybrid and shunt active power filters for single-phase applications:


