**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31106

##### Hamiltonian Factors in Hamiltonian Graphs

**Authors:**
Sizhong Zhou,
Bingyuan Pu

**Abstract:**

**Keywords:**
Neighborhood,
graph,
factor,
Hamiltonian factor

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1070507

**References:**

[1] B. Alspach, K. Heinrich, G. Liu, Contemporary design theory-A collection of surveys, Wiley, New York, 1992, 13-37.

[2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, The Macmillan Press, London, 1976.

[3] J. R. Correa, M. Matamala, Some remarks about factors of graphs, Journal of Graph Theory 57(2008), 265-274.

[4] M. Kano, A sufficient condition for a graph to have

[a, b]-factors, Graphs and Combinatorics 6(1990), 245-251.

[5] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Mathematics, Available online 15 January 2009.

[6] S. Zhou, A sufficient condition for a graph to be an (a, b, k)-critical graph, International Journal of Computer Mathematics, to appear.

[7] S. Zhou, J. Jiang, Notes on the binding numbers for (a, b, k)-critical graphs, Bulletin of the Australian Mathematical Society 76(2)(2007), 307-314.

[8] S. Zhou, Y. Xu, Neighborhoods of independent sets for (a, b, k)-critical graphs, Bulletin of the Australian Mathematical Society 77(2)(2008), 277-283.

[9] H. Matsuda, On 2-edge-connected

[a, b]-factors of graphs with Ore-type condition, Discrete Mathematics 296(2005), 225-234.

[10] S. Zhou, H. Liu, Y. Xu, A degree condition for graphs to have connected (g, f)-factors, Bulletin of the Iranian Mathematical Society 35(1)(2009), 1-11.

[11] G. Li, Y. Xu, C. Chen, Z. Liu, On connected (g, f+1)-factors in graphs, Combinatorica 25(4)(2005), 393-405.

[12] H. Matsuda, Degree conditions for Hamiltonian graphs to have

[a, b]- factors containing a given Hamiltonian cycle, Discrete Mathematics 280(2004), 241-250.

[13] J. Cai, G. Liu, Binding number and Hamiltonian (g, f)-factors in graphs, Journal of Applied Mathematics and Computing 25(2007), 383-388.

[14] G. Liu, L. Zhang, Factors and factorizations of graphs (in Chinese), Advances in Mathematics 29(2000), 289-296.

[15] L. Lovasz, Subgraphs with prescribed valencies, Journal of Combinatorial Theory 8(1970), 391-416.