Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30172
On Cross-Ratio in some Moufang-Klingenberg Planes

Authors: Atilla Akpinar, Basri Celik

Abstract:

In this paper we are interested in Moufang-Klingenberg planesM(A) defined over a local alternative ring A of dual numbers. We show that a collineation of M(A) preserve cross-ratio. Also, we obtain some results about harmonic points.

Keywords: Moufang-Klingenberg planes, local alternative ring, projective collineation, cross-ratio, harmonic points.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1334484

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916

References:


[1] Akpinar A., Celik B., Ciftci S. Cross-ratios and 6-figures in some Moufang-Klingenberg planes, Bulletin of the Belgian Math. Soc.-Simon Stevin 15(2008), 49-64.
[2] Akpinar A., Celik B. Two new collineations of some Moufang- Klingenberg planes, International Journal of Comp. and Math. Sci. 4(2)(2010), 81-84.
[3] Baker C.A., Lane N.D., Lorimer J.W. A coordinatization for Moufang- Klingenberg planes, Simon Stevin 65(1991), 3-22.
[4] Bell J.L. The art of the intelligible: An elementary survey of mathematics in its conceptual development, Kluwer Acad. Publishers: The Netherland, (2001).
[5] Blunck A. Cross-ratios in Moufang planes, J. Geometry 40(1991), 20- 25.
[6] Blunck A. Projectivities in Moufang-Klingenberg planes, Geom. Dedicata 40(1991), 341-359.
[7] Blunck A. Cross-ratios over local alternative rings, Res. Math. 19(1991), 246-256.
[8] Blunck A. Cross-ratios in Moufang-Klingenberg planes, Geom. Dedicata 43(1992), 93-107.
[9] Ciftci S., Celik B. On the cross-ratios of points and lines in Moufang planes, J. Geometry 71(2001), 34-41.
[10] Ferrar J.C. Cross-ratios in projective and affine planes, in Plaumann, P. and Strambach, K., Geometry - von Staudt-s Point of View (Proceedings Bad Windsheim, 1980), Reidel, Dordrecht, (1981), 101-125.
[11] Pickert G. Projektive Ebenen. Springer: Berlin, (1955).
[12] Schafer R.D. An introduction to nonassociative algebras, Dover Publications: New York, (1995).