On Suborbital Graphs of the Congruence Subgroup r 0(N)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
On Suborbital Graphs of the Congruence Subgroup r 0(N)

Authors: Bahadir O. Guler, Serkan Kader, Murat Besenk

Abstract:

In this paper we examine some properties of suborbital graphs for the congruence subgroup r 0 (N) . Then we give necessary and sufficient conditions for graphs to have triangels.

Keywords: Congruence subgroup, Imprimitive action, Modulargroup, Suborbital graphs.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061517

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417

References:


[1] M. Akbas, On suborbital graphs for the modular group, Bull. London Math. Soc. 33, no. 6, 2001, pp 647-652.
[2] M. Akbas and T. Başkan, Suborbital graphs for the normalizer of r0(N), Tr. J. of Mathematics 20, 1996, pp 379-387.
[3] N.L. Bigg and A.T. White, Permutation groups and combinatorial structures, London Mathematical Society Lecture Note Series 33, Cambridge Universty Press, Cambridge, 1979.
[4] G.A. Jones, D. Singerman, K. Wicks, The Modular Group and Generalized Farey Graphs, London Math. Soc. Lecture Note Series, Vol. 160, Cambridge Universty Press, 1991, pp 316-338.
[5] R. S. Kulkarni, An Arithmetic-Geometric Method in The Study of The Subgroups of The Modular Group, American Journal of Mathematics, 113 ,1991, pp 1053-1133.
[6] B. Schoeneberg, Elliptic Modular Functions, Springer Verlag, Berlin, 1974.
[7] C. C. Sims, Graphs and Finite Permutation Groups, Math. Z., 95, 1967, pp 76-86.
[8] T. Tsuzuku, Finite Groups and Finite Geometries, Cambridge University Pres, Cambridge,1982.