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Abstract—In this paper we examine some properties of
suborbital graphs for the congruence subgroup I' () . Then we give
necessary and sufficient conditions for graphs to have triangels.
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I. INTRODUCTION

ET TI' denote the inhomogeneous group PSL(2,Z)acting
on the upper halfplane H :={z e C:Im(z) > 0} via:

b
Az =EF [ Per.
cz+d c d

Among the subgroups of I" the congruence subgroups such
as

nm::{(z 2]6” a=d=1 modN,bEczO(modN)}

I,(N)= {{j fljel" lc=0 (modN)}

have been the objects of detailed studies due to their
signifiance in the arithmetic of elliptic curves, integral
quadratic forms, elliptic modular forms in [5], [6]. In this

paper, we define T'*(N)as the group obtained by adding the
stabilizer of oo to the congruence subroup I'(), that is,

11
"(N) = <(o J,F(N)>

which is easily seen that

. {[1+aN b
(V) =

ca,b,c,d € Z,det=1;.
¢cN 1+dN
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1. THE ACTION OF I',(N)ON Q
Every element of Q::Qu{oo} can be represented as a

reduced fraction f, with x,yeZ and (x,y)=1. Since
y

-x . . .
=——, this representation is not unique. We represent co as
-y

ol= < |x

-1 ) . (a D X .
= — . The action of the matrix el on — is
0 c d

y
M
=
c d)y

b .
It is easily seen that if (g dj el and Xe Q is areduced
¢ y

clax+by)—a(cx+dy)=—y and

ax+by

ex+dy

fraction then, since

d(ax+by)—b(cx+dy)=x,
(ax+by,ex+dy)=1.

The action of a matrix on X and on - is identical.
Yy -y

Theorem 2.1. The action of I' (N) on Q is not transitive.

a b
Proof. F 1), f r,(N
roof. From (1) Or(cN dje o(V)

a+bN

a b1 B
¢N d\N) cN+dN

. . 1.
is a reduced fraction, so ﬁ IS not sent to

under the
N +1

action of T" (N).

Without loss of generality, for making calculations easier, N
will be a prime p throughout the paper.

1 1
Theorem 2.2. The orbits of I'(p) are (J and ( j .
p

Proof. Using the corallaries from [2] we can write down the
sets of orbits of ', (V) in general

(Zj:{ie@:(p,y):b,xza mod[b,%j}.
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Then we have

L }
= —:1keZ,(k,yp)=1
p b4

: = k'kf Z,(k,0)=1

1 —{z L E 9( s )_ }

We now consider the imprimitivity of the action of
Iy(p)on Q.

and

Let (G,QQ) be transitive permutation group, consisting of a
group G acting on a set Q transitively. An equivalence relation
~ on Q is called G—invariant if whenever a, 8 €Q satisfy
a~f then g(a) = g(f ) for all g in G. The equivalence
classes are called blocks.

We call (G,QQ) imprimitive if Q admits some G — invariant
equivalence relation different from
(i) the identity relation, @ = # ifand only if o =
(ii) theuniversal relation, a ~ § forall o, f €Q.

Otherwise (G,QQ) is called primitive. We now give a lemma
from [3].

Lemma 2.3. Let (G,Q) be transitive. (G,Q2) imprimitive if and
only if G, the stabilizer of a point a €Q , is a maximal

subgroup of G for each o €Q.

What the lemma is saying is whenever G, < H < G, then Q

admits some G — invariant equivalence relation other than
trivial cases. In fact, since G acts transitively, every element of
Q has the form g(a) for some g € G. If we define the relation
~on Q) as

g(@)~g'(a) ifand only if g'e gH,

then it is easily seen that it is non-trivial G-—invariant
equivalence relation. That is (G,2) imprimitive.

From the above we see that the number of blocks is equal to
the index | G : H |.

We now apply these ideas to the case where G is the T',(p)
and Q is Q. An obvious choice for H is I'"(p). Clearly
I, <T'(p) <T,(p).Then we have

Corollary 2.4. (T, (p) ,Q ) is imprimitive permutation group.
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1
I',(p) acts transitively and imprimitively on the set ( j
p
Let ~ denote the I' (p)— invariant equivalence relation

1
induced on ( j by I',(p) as:
p

and w=

a, a, 1
If v=—1 are elements of , then
)44 pe, p

v=g(o)and w=g'(o)for elements g,g'el (p) of the

form
_ a bl r_ a, bz
e d) T T e )

Now v~ w ifand only if g”'g’ €eI""(p), that is,

oy (dlaz_p(czbl) dlbz _bldz
g =

p(aICZ _Claz) aldz _p(clbz)j © r*(p)

ifand only if d,a, =1 (mod p) and d,a, =1(mod p) . Then
ada, =a (mod p) and so a, =a, (mod p).
Hence we see that
v~w if and only if @, = a, (mod p)

(1)

By our general discussion of imprimitivity, the number
v (p) of equivalence class under = is given by

y(p)=IT,(p):T"(p)I.

11
Since {O J el(p),then [T (p):T'(p)|=p. From [6],

we know that

|T:T(N) |:N3H(1—izj
P

pIN

and |r;r0(N)|:NH(1+lj.
p

pIN

Calculating for N = p and using the following equation

|T:T(p) |=|T:Ty(p) || Ty (p): T (p) || T (p): T(P)|

p(p*-1) p+l p-1 P

we have that

LM

From (1), it is clear that

{l}:{lerP:x,yeZ};[w]:{l}.
P yp 0
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III. SUBORBITAL GRAPHS

In 1967 Sims introduced the idea of suborbital graphs of a
permutation group G acting on a set Q) : these are graphs with
vertex set Q, on which G induces automorphism in [7]. Also
in [8] the applications are used in finite groups.

Let (G,Q) be transitive permutation group. Then G acts on
QxQ by

g:(a,f)—>(g(@).g(B)), g€ G and a, Q.

The orbits of this action are called suborbitals of G, that
containing (a,f ) being denoted by O (,f ). From O (o, ) we
can form a suborbital graph G (e,f ) : its vertices are the
elements of €, and there is a directed edge from y to o,

denoted by y — 9, if (y,0)e O (&, ). We can draw this edge
as a hyperbolic geodesic in the upper half-plane H.

In this final section, we determine the suborbital graphs for
1 1

I',(p) on ( j Since I',(p) acts transitively on ( j, each
p p

u
v=—,

p
and corresponding

1
suborbital contains a pair (oo,v) for some ve{ j;

p
we denote this suborbital by O

u,p

suborbital graph by G

u,p
G, , is adisjoint union of y(p) subgraphs forming blocks

with respect to " =~ " I' (p)—invariant equivalence relation.
I',(p) permutes these blocks transitively and these subgraphs

are all isomorphic [4].

Therefore, it is sufficient to do the calculations only for the
block [owo]. Let F, , denote the subgraph of G, , whose

vertices form the block [o0].

Theorem 3.1. Let ~ and = be in the block [o0]. Then there is
s y

roox .
anedge ———in F,
sy ’

x=zur (mod p) and r=1(mod p), ry—sx==xp

if and only if

y=xsu (mod p) and s =0(mod p), ry —sx ==p.

. roox .
Proof. Since ——>—e#F, , then there exists some
sy ’

T el (p)such that T sends the pair{%,lj to the pair
p

(

1+ap b
pc

>

“ |

1+dp

£J,that is, for T:{ jel"*(p),detT—l,
y
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T(lj = and 7|2 |=Z. From these equations , it is
0) s p) y
clear that x =ur (mod p) and y =su (mod p).

Furthermore

1+ap b L ou) (r x
pc l+dp)\0 p s y)
so that ry—sx=p.

Conversely, let be x =ur (mod p) and y =su (mod p) and
also =1 (mod p) and s =0 (mod p) .Then there are b,d € Z
such that
equivalences in ry—sx = p , we obtain

x=ur+bp and y=su+dp . If we put these
r(us+dp)—s(ur+bp)=p.

W T

then rd —bs=1. As rd —bs=1(mod p) and s=0 (mod p),

Since

ur+bp
us+dp )

then rd =1(mod p). Since r=1(modp), we obtain
d=1(mod p).
Consequently,
A :(r bj, det 4=1 and r=d=l(modp)
s d s =0 (mod p)
so AeT"(p).

The proof for (—) is similiar.

Theorem 3.2. T"(p) permutes the vertices and the edges of
F, , transitively.

1
Proof. Suppose that wu,ve[o]. As I'/(p) acts on ( j
p

transitively, g(u)=v for some geI' (p). Since u = and

~ " is T',(p)— invariant
v= g(wo).

equivalence relation, then

Thus, as g(») €[],

gu) = g(x), that is,
gel(p).

Assume that v,we[oo]; x, ye[e] and v >w, x> yeF, .
Then (v,w)eO

p Therefore, for some
S,TeTl,(p)

and (x,y)e o,,-

S(oo):v,S(lJ:W;T(oo):x, T(w)=y.
p

As S(w), T(0) €[], then S,T eI"(p). So this proof is
completed.
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o oo [3]

[4]

[5]

u u+l (6]

F [7]

Fig. 1 F, , — Suborbital Graph (8]

Theorem 3.3. F

u,p

u’ u+1=0(mod p).

contains a ftriangle if and only if

Proof. Since I''(p) permutes the vertices transitively F,

and oo — £ , then we may suppose that triangle has the form
p

u
0—>— V>0,
p

. 1
Assume that v -x , ¥>0.Since =X — —, then
yp yw 0

0O-x—yp==%p.

As y>0,theny= 1. Therefore v=""_Since 1—>£, then

y p Yy
from Theorem 3.1 we obtain
u-x=1 and x=u’(mod p) ()
u-x=-1 and x=-u’(modp) 3)

From (2) and (3) , we have that
u’ —u+1=0(mod p) and u’+u+1=0(mod p)
respectively.

Conversely, suppose that
we have the triangle

u’ u+1=0(mod p). Clearly,

u utl
0—>——>—— >®©
p p

from Theorem 3.1.
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