Analysis and Circuit Modeling of APDs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32825
Analysis and Circuit Modeling of APDs

Authors: A. Ahadpour Shal, A. Ghadimi, A. Azadbar

Abstract:

In this paper a new method for increasing the speed of SAGCM-APD is proposed. Utilizing carrier rate equations in different regions of the structure, a circuit model for the structure is obtained. In this research, in addition to frequency response, the effect of added new charge layer on some transient parameters like slew-rate, rising and falling times have been considered. Finally, by trading-off among some physical parameters such as different layers widths and droppings, a noticeable decrease in breakdown voltage has been achieved. The results of simulation, illustrate some features of proposed structure improvement in comparison with conventional SAGCM-APD structures.

Keywords: Optical communication systems (OCS), Circuit modeling, breakdown voltage, SAGCM APD

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1060301

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025

References:


[1] F. Ma, S. Wang, and X. Li; "Monte Carlo simulation of low noise avalanche photodiodes with heterojunction," Appl. Phys. Lett., vol. 92,no. 2, pp. 4791-4795, 2002.
[2] G.Wang, T.Tokumitsu, I.Hanawa, Y.Yoneda, K.Sato, andM. Kobayashi,"Atime-delayequivalent-circuitmodel of ultrafast p-i-n photodiodes" IEEE Trans .Microw.Theory Tech., vol. 51, no. 4, pp 1227-1233,Apr.2003.
[3] F. Ma, S. Wang, and X. Li; "Monte Carlo simulation of low noise avalanche photodiodes with heterojunction," Appl. Phys. Lett., vol. 92,no. 2, pp. 4791-4795, 2002.
[4] F. Barzegar, M. H. Sheikhi, "A New Physical Modeling for Multiquantum Well Structure APD Considering Nonuniformity of Electric Field in Active Region", International Journal of Electrical and Electronics Engineering, vol.2, no. 1, pp. 45-52, 2009
[5] N.Duan,S.Wang,X.G.Zheng,X.Li,LiNing,J.C.Campbell,C.Wang,andL.A .Coldren,"Detrimental effect of impact ionizationin the absorption regionon the frequency response and excess noise performance of InGaAs-InAlAs SACM avalanche photodiodes," IEEE J. Quant.Electron., vol. 41, no. 4, pp. 568-572, Apr. 2005.
[6] Y. Zhao, S. He, "Multiplication characteristics of InP/InGaAs avalanche photodiodes with a thicker charge layer," Optical Communications 265,pp. 476-480, 2006.
[7] S. An, M. J. Deen, "Low-frequency noise in single growth planar separate absorption, grading, charge, and multiplication avalanche photodiodes," IEEE Trans. Electron. Dev. 47, pp. 537-543 (2000).
[8] L. E. Tarof, "Planar InP/InGaAs avalanche photodetector with a gainbandwidth product in excess of 100 GHz,"Electron. Lett. 27, pp. 34-36 (1991).
[9] H. Nie, O. Baklenov, P. Yuan, C. Lenox, B. G. Streetman, and J. C. Campbell, "Quantum-dot resonant-cavity separate absorption, charge, and multiplication avalanche photodiode operating at 1.06 um," IEEE Photon. Technol .Lett. 10, pp. 1009-1011 (1998).
[10] C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, Jr., B. G. Streetman, and J. C. Campbell, "Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz," IEEE Photon. Technol. Lett. 11, pp. 1162-1164 (1999).
[11] A.Banoushi, M.R.Kardan, M.Ataee Naeini, "A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes." Solid-State Electronics, 49871- 877 (2005)