The Contribution of Growth Rate to the Pathogenicity of Candida spp.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
The Contribution of Growth Rate to the Pathogenicity of Candida spp.

Authors: Shu-Ying Marissa Pang, Stephen Tristram, Simon Brown

Abstract:

Fungal infections are becoming more common and the range of susceptible individuals has expanded. While Candida albicans remains the most common infective species, other Candida spp. are becoming increasingly significant. In a range of large-scale studies of candidaemia between 1999 and 2006, about 52% of 9717 cases involved C. albicans, about 30% involved either C. glabrata or C. parapsilosis and less than 15% involved C. tropicalis, C. krusei or C. guilliermondii. However, the probability of mortality within 30 days of infection with a particular species was at least 40% for C. tropicalis, C. albicans, C. glabrata and C. krusei and only 22% for C. parapsilopsis. Clinical isolates of Candida spp. grew at rates ranging from 1.65 h-1 to 4.9 h-1. Three species (C. krusei, C. albicans and C. glabrata) had relatively high growth rates (μm > 4 h-1), C. tropicalis and C. dubliniensis grew moderately quickly (Ôëê 3 h-1) and C. parapsilosis and C. guilliermondii grew slowly (< 2 h-1). Based on these data, the log of the odds of mortality within 30 days of diagnosis was linearly related to μm. From this the underlying probability of mortality is 0.13 (95% CI: 0.10-0.17) and it increases by about 0.09 ± 0.02 for each unit increase in μm. Given that the overall crude mortality is about 0.36, the growth of Candida spp. approximately doubles the rate, consistent with the results of larger case-matched studies of candidaemia.

Keywords: Candida spp., candidiasis, growth, pathogenicity.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1057495

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596

References:


[1] D. L. R. Yamamura, C. Rotstein, L. E. Nicolle, and S. Ioannou, "Candidemia at selected Canadian sites: results from the Fungal Disease Registry, 1992-1994," Canadian Medical Association Journal, vol. 160, pp. 493-499, 1999.
[2] A. M. Tortorano, J. Peman, H. Bernhardt, L. Klingspor, C. C. Kibbler, O. Faure, E. Biraghi, E. Canton, K. Zimmermann, S. Seaton, and R. Grillot, "Epidemiology of candidaemia in Europe: results of 28-month European Confederation of Medical Mycology (ECMM) hospital-based surveillance study," European Journal of Clinical Microbiology and Infectious Diseases, vol. 23, pp. 317-322, 2004.
[3] L. Ostrosky-Zeichner and P. G. Pappas, "Invasive candidiasis in the intensive care unit," Critical Care Medicine, vol. 34, pp. 857-863, 2006.
[4] C. Viscoli, C. Girmenia, A. Marinus, L. Collete, P. Martino, B. Vandercam, C. Doyen, B. Lebeau, D. Spence, V. Kremery, B. De Pauw, and F. Meunier, "Candidemia in cancer patients: a prospective, multicenter surveillance study by the invasive fungal infection group (IFIG) of the European Organization for Research and Treatment of Cancer (EORTC)," Clinical Infectious Diseases, vol. 28, pp. 1071-1079, 1999.
[5] T. W. Boo, B. O'Reilly, J. O'Leary, and B. Cryan, "Candidaemia in an Irish tertiary referral hospital: epidemiology and prognostic factors," Mycoses, vol. 48, pp. 251-259, 2005.
[6] M. Nucci, A. L. Colombo, F. Silveira, R. Richtmann, R. Salomão, M. L. Branchini, and N. Spector, "Risk factors for death in patients with candidemia," Infection Control and Hospital Epidemiology, vol. 19, pp. 846-850, 1998.
[7] G. Rennert, H. S. Rennert, S. Pitlik, R. Finkelstein, and R. Kitzes-Cohen, "Epidemiology of candidemia - a nationwide survey in Israel," Infection, vol. 28, pp. 26-29, 2000.
[8]
[8]M. A. Pfaller, P. G. Pappas, and J. R. Wingard, "Invasive fungal pathogens: current epidemiological trends," Clinical Infectious Diseases, vol. 43, pp. S3-S14, 2006.
[9] A. Bedini, C. Venturelli, C. Mussini, G. Guaraldi, M. Codeluppi, V. Borghi, F. Rumpianesi, F. Barchiesi, and R. Esposito, "Epidemiology of candidaemia and antifungal susceptibility patterns in an Italian tertiarycare hospital," Clinical Microbiology and Infection, vol. 12, pp. 75-80, 2006.
[10] A. Viudes, J. Pemán, E. Cantón, P. Ubeda, J. L. López-Ribot, and M. Gobernado, "Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death," European Journal of Clinical Microbiology and Infectious Diseases, vol. 21, pp. 767-774, 2002.
[11] D. M. MacCallum and F. C. Odds, "Need for early antifungal treatment confirmed in experimental disseminated Candida albicans infection," Antimicrobial Agents and Chemotherapy, vol. 48, pp. 4911-4914, 2004.
[12] H. Y. Yap, K. M. Kwok, C. D. Gomersall, S. C. Fung, T. C. Lam, P. N. Leung, M. Hui, and G. M. Joynt, "Epidemiology and outcome of Candida bloodstream infection in an intensive care unit in Hong Kong," Hong Kong Medical Journal, vol. 15, pp. 255-261, 2009.
[13] H. Alonso-Valle, O. Acha, J. D. García-Palomo, C. Fariñas-Álvarez, C. Fernández-Mazarrasa, and M. C. Fariñas, "Candidemia in a tertiary care hospital: epidemiology and factors influencing mortality," European Journal of Clinical Microbiology and Infectious Diseases, vol. 22, pp. 254-257, 2003.
[14] J. Pemán, E. Cantón, and M. Gobernado, "Epidemiology and antifungal susceptibility of Candida species isolated from blood: results of a 2-year multicentre study in Spain," European Journal of Clinical Microbiology and Infectious Diseases, vol. 24, pp. 23-30, 2005.
[15]
[15]M. L. Wilson, T. E. Davis, S. Mirrett, J. Reynolds, D. Fuller, S. D. Allen, K. K. Flint, F. Koontz, and L. B. Reller, "Controlled comparison of the BACTEC high-blood-bolume fungal medium, BACTEC plus 26 aerobic blood culture bottle, and 10-milliliter isolator blood culture system for detection of fungemia and bacteremia," Journal of Clinical Microbiology, vol. 31, pp. 865-671, 1993.
[16] P. R. Murray, G. E. Hollick, R. C. Jerris, and M. L. Wilson, "Multicenter comparison of BACTEC 9050 and BACTEC 9240 blood culture systems," Journal of Clinical Microbiology, vol. 36, pp. 1601-1603, 1998.
[17] R. L. Schelonka and S. A. Moser, "Time to positive culture results in neonatal Candida septicemia," Journal of Pediatrics, vol. 142, pp. 564- 565, 2003.
[18] B. Almirante, D. Rodriguez, B. J. Park, M. Cuenca-Estrella, A. M. Planes, M. Almela, J. Mensa, F. Sanchez, J. Ayats, M. Gimenez, P. Saballs, S. K. Fridkin, J. Morgan, J. L. Rodriguez-Tudela, D. W. Warnock, and A. Pahissa, "Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, Barcelona, Spain, from 2002 to 2003," Journal of Clinical Microbiology, vol. 43, pp. 1829-1835, 2005.
[19] L. Klingspor, E. Tornqvist, A. Johansson, B. Petrini, U. Forsum, and G. Hedin, "A prospective epidemiological survey of candidaemia in Sweden," Scandinavian Journal of Infectious Diseases, vol. 36, pp. 52- 55, 2004.
[20] J. Garbino, L. Kolarova, P. Rohner, D. Lew, P. Pichna, and D. Pittet, "Secular trends of candidemia over 12 years in adult patients at a tertiary care hospital," Medicine, vol. 81, pp. 425-433, 2002.
[21] S. Brown, "Two implications of common models of microbial growth," ANZIAM Journal, vol. 49, pp. C230-C242, 2007.
[22] S. Schelenz and W. R. Gransden, "Candidaemia in a London teaching hospital: analysis of 128 cases over a 7-year period," Mycoses, vol. 46, pp. 390-396, 2003.
[23] H. Wisplinghoff, T. Bischoff, S. M. Tallent, H. Seifert, R. P. Wenzel, and M. B. Edmond, "Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study," Clinical Infectious Diseases, vol. 39, pp. 309-318, 2004.
[24] H. F. Cantrell and A. Widra, "Experimental candidiasis in cortisonetreated mice," Journal of Bacteriology, vol. 87, pp. 1532, 1964.
[25] R. Hurley and V. C. Stanley, "Cytopathic effects of pathogenic and nonpathogenic species of Candida on cultured mouse epithelial cells: relation to the growth rate and morphology of the fungi," Journal of Medical Microbiology, vol. 2, pp. 63-74, 1969.
[26] G. Reig, Y. Fu, A. S. Ibrahim, X. Zhou, S. G. Filler, and J. E. Edwards, Jr, "Unanticipated heterogeneity in growth rate and virulence among Candida albicans AAF1 null mutants," Infection and Immunity, vol. 67, pp. 3193-3198, 1999.
[27] P. G. Pappas, J. H. Rex, J. Lee, R. J. Hamill, R. A. Larsen, W. G. Powderly, C. A. Kauffman, N. Hyslop, J. E. Mangino, S. Chapman, H. W. Horowitz, J. E. Edwards, and W. E. Dismukes, "A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients," Clinical Infectious Diseases, vol. 37, pp. 634-643, 2003.
[28] A. N. Sofair, G. M. Lyon, S. Huie-White, E. Reiss, L. H. Harrison, L. T. Sanza, B. A. Arthington-Skaggs, and S. K. Fridkin, "Epidemiology of community-onset candidemia in Connecticut and Maryland," Clinical Infectious Diseases, vol. 43, pp. 32-39, 2006.
[29] C. C. Shepard, "Growth characteristics of tubercule bacilli and certain other mycobacteria in HeLa cells," Journal of Experimental Medicine, vol. 105, pp. 39-48, 1957.
[30] G. Furness, "Interaction between Salmonella typhimurium and phagocytic cells in cell culture," Journal of Infectious Diseases, vol. 103, pp. 272-277, 1958.
[31] R. A. Hajjeh, A. N. Sofair, L. H. Harrison, G. M. Lyon, B. A. Arthington-Skaggs, S. A. Mirza, M. Phelan, J. Morgan, W. Lee-Yang, M. A. Ciblak, L. E. Benjamin, L. Thomson Sanza, S. Huie, S. F. Yeo, M. E. Brandt, and D. W. Warnock, "Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program," Journal of Clinical Microbiology, vol. 42, pp. 1519-1527, 2004.
[32] D. M. MacCallum, L. Castillo, K. Nather, C. A. Munro, A. J. P. Brown, N. A. R. Gow, and F. C. Odds, "Property differencs among the four major Candida albicans strain clades," Eukaryotic Cell, vol. 8, pp. 373- 387, 2009.
[33] E. Anaissie, R. Hachem, C. K-Tin-U, L. C. Stephens, and G. P. Bodey, "Experimental hematogenous candidiasis caused by Candida krusei and Candida albicans: species differences in pathogenicity," Infection and Immunity, vol. 61, pp. 1268-1271, 1993.
[34] V. T. Andriole and H. F. Hasenclever, "Factors influencing experimental candidiasis in mice. I. Alloxan diabetes," Yale Journal of Biology and Medicine, vol. 35, pp. 96-112, 1962.
[35] M. Arendrup, T. Horn, and N. Frimodt-M├©ller, "In vivo pathogenicity of eight medically relevant Candida species in an animal model," Infection, vol. 30, pp. 286-291, 2002.
[36] J. Brieland, D. Essig, C. Jackson, D. Frank, D. Loebenberg, F. Menzel, B. Arnold, B. DiDomenico, and R. Hare, "Comparison of pathogenesis and host immune responses to Candida glabrata and Candida albicans in systemically infected immunocompetent mice," Infection and Immunity, vol. 69, pp. 5046-5055, 2001.
[37] E. Goldstein, M. H. Grieco, G. Finkel, and D. B. Louria, "Studies on the pathogenesis of experimental Candida parapsilosis and Candida guilliermondii infections in mice," Journal of Infectious Diseases, vol. 115, pp. 293-302, 1965.
[38] H. F. Hasenclever, "Comparative pathogenicity of Candida albicans for mice and rabbits," Journal of Bacteriology, vol. 78, pp. 105-109, 1959.
[39] S.-Y. M. Pang, S. Tristram, and S. Brown, "Inhibition of the growth of pathogenic Candida spp. by salicylhydroxamic acid," International Journal of Biological and Life Sciences, vol. 7, pp. 1-7, 2011.
[40] S.-Y. M. Pang, S. Tristram, and S. Brown, "Salicylhydroxamic acid inhibits the growth of Candida albicans," International Journal of Biological and Life Sciences, vol. 6, pp. 40-46, 2010.
[41] M. H. Zwietering, I. Jongenburger, F. M. Rombouts, and K. van 't Riet, "Modeling of the bacterial growth curve," Applied and Environmental Microbiology, vol. 56, pp. 1875-1881, 1990.
[42] R Development Core Team, R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2006.
[43] G. Butler, M. D. Rasmussen, M. F. Lin, M. S. A. Santos, S. Sakthikumar, C. A. Munro, E. Rheinbay, M. Grabherr, A. Forche, J. L. Reedy, I. Agrafioti, M. B. Arnaud, S. Bates, A. J. P. Brown, S. Brunke, M. C. Costanzo, D. A. Fitzpatrick, P. W. J. de Groot, D. Harris, L. L. Hoyer, B. Hube, F. M. Klis, C. Kodira, N. Lennard, M. E. Logue, R. Martin, A. M. Neiman, E. Nikolaou, M. A. Quail, J. Quinn, M. C. Santos, F. F. Schmitzberger, G. Sherlock, P. Shah, K. A. T. Silverstein, M. S. Skrzypek, D. Soll, R. Staggs, I. Stansfield, M. P. H. Stumpf, P. E. Sudbery, T. Srikantha, Q. Zeng, J. Berman, M. Berriman, J. Heitman, N. A. R. Gow, M. C. Lorenz, B. W. Birren, M. Kellis, and C. A. Cuomo, "Evolution of pathogenicity and sexual reproduction in eight Candida genomes," Nature, vol. 459, pp. 657-662, 2009.
[44] P. Dawyndt, M. Vancanneyt, H. De Meyer, and J. Swings, "Knowledge accumulation and resolution of data inconsistencies during the integration of microbial information sources," IEEE Transactions on Knowledge and Data Engineering, vol. 17, pp. 1111-1126, 2005.
[45] J. Berkson, "Application of the logistic function to bio-assay," Journal of the American Statistical Association, vol. 39, pp. 357-365, 1944.