Hydrolysis of Eicchornia crassipes and Egeria densa for Ethanol Production by Yeasts Isolated from Colombian Lake Fúquene
Authors: P. Martínez-Nieto, M. Vanegas-Hoyos, M. Zapata-Pineda, J. Robles-Camargo
Abstract:
The aquatic plants are a promising renewable energy resource. Lake Fúquene polluting macrophytes, water hyacinth (Eichhornia crassipes C. Mart.) and Brazilian elodea (Egeria densa Planch.), were saccharifiedby different treatments and fermented to ethanol by native yeasts. Among the tested chemical and biological methods for the saccharification, Pleurotus ostreatus at 10% (m/v) was chosen as the best pre-treatment in both macrophytes (P<0.01). Subsequently 49 yeasts were isolated from Lake Fúquene and nine strains were selected, which presented the highest precipitates characteristic of ethanol in the iodoform test. The fermentations from water hyacinth and Brazilian elodea hydrolysates using these yeasts produced ethanol at a rate between 0.38 to 0.80gL-1h-1 and 0.15 to 0.27gL-1h-1 respectively. The ethanol presence was confirmed by gas chromatography–mass spectrometry. The nine yeasts chosen were preliminarily identified as belonging to the genera Candida spp., Brettanomyces sp. and Hansenula spp.
Keywords: Bio-ethanol, Chemical hydrolysis, Invasive aquatic macrophytes, Native yeasts fermenting, P. ostreatus
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088798
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6151References:
[1] C. Isarankura-Na-Ayudhya, T. Tantimongcolwat, T. Kongpanpee, P. Prabkate, and V. Prachayasittikul, “Appropriate Technology for the Bioconversion of Water Hyacinth (Eichhornia crassipes) to Liquid Ethanol: Future Prospects for Community Strengthening and Sustainable Development”,EXCLI J., vol. 6, pp. 167-176, 2007.
[2] J. Mohammad, Taherzadeh, and K. Keikhosro, “Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review”, Int. J. Mol. Sci., vol. 9, pp. 1621-1651, 2008.
[3] U.S. Aswathy, R. K. Sukumaran, G. Lalitha-Devi, K.P. Rajasree, R. R Singhania., and A. Pandey, “Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy”, Bioresource Technol., vol. 10, no.3, pp. 925-930, 2010.
[4] A. C Wilkie, and J. M. Evans, “Aquatic plants: an opportunity feedstock in the age of bioenergy”, Biofuels, vol. 1, no.2, pp. 311-321, 2010.
[5] A. Manivannan, P. Hepsibha, R. Jayarani, andT. Narendhirakannan, “Enhanced acid hydrolysis for bioethanol production from wáter hyacinth (Eichhornia crassipes) using fermentating yeast Candida intermedia NRRL Y 981”, J. Sci. Ind. Res., vol. 71, no. 1, pp. 51-56, 2012.
[6] G. O. Masami, I. Y. Usui, and N. Urano, "Ethanol production from the water hyacinth Eichhornia crassipes by yeast isolated from various hydrospheres”, Afr. J. Microbiol. Res., vol. 2, pp. 110-113, 2008.
[7] J. E. Hronich, M. Lealon, J. Plawsky, and H. R. Bungay, “Potential of Eichhornia crassipes for biomass refining”, J. Ind. Microbiol. Biotechnol., vol 35, pp. 393–402, 2008.
[8] A. Bhattacharya, and P. Kumar, “Water Hyacinth as a potential biofuel crop”, Elec. J. Env. Agricult. Food Chem., vol. 9, no. 1, pp. 112-122, 2010.
[9] K. Satyanagalakshmi,, S. Raveendran, B. Parameswaran, U. J. Kanakambaran, R. K. Sukumaran, and A. Pandey, “Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation”, J. Sci. Ind. Res., vol 70, pp. 156-161, 2011.
[10] P. K. Ganguly, and A. D. Chatterjee, “Studies on ethanol production from water hyacinth—A review”, Renew. Sust. Energ. Rev., vol. 16, pp. 966– 972, 2012.
[11] D. L. Maya, D. Castillo, P. A Ramos, and A. M. Roldán, “Análisis de la acción colectiva para el Manejo de cuencas. Estudio piloto-cuenca de la Laguna de Fúquene”, 2004. Available on: http://www.ibcperu.org/doc/ isis/7685.pdf
[12] G. Andrade, and L. Franco, “El complejo de humedales de Fúquene, Cucunubá y Palacio. Un ecosistema estratégico bajo tensión” in Fúquene, Cucunuba y Palacio, Conservación de la biodiversidad y manejo sostenible de un ecosistema lagunar andino, L. Franco, and G. Andrade, Eds. Bogotá, Colombia: Ediprint, 2007, pp. 43-60.
[13] L. Franco, A. Villa, and A. Sarmiento, “Clasificación y Estado Actual de los hábitats del Humedal de las lagunas de Fúquene, Cucunubá y Palacio: Implicaciones para su manejo” in Fúquene, Cucunuba y Palacio, Conservación de la biodiversidad y manejo sostenible de un ecosistema lagunar andino, L. Franco, and G. Andrade, Eds. Bogotá, Colombia: Ediprint, 2007, pp. 103-130.
[14] J. Nigam, “Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeasts”, J. Biotechnol., vol. 97, pp. 107-116, 2002.
[15] M. Abraham, and G. M. Kurup, “Bioconversion of Tapioca (Manihot esculenta) Waste and Water Hyacinth (Eichhornia crassipes)-Influence of Various Physico-Chemical Factors”, J. Ferment. Bioeng., vol. 82, no.3, pp. 259-263, 1996.
[16] M. N. Eshtiaghi, N. Yoswathana, J. Kuldiloke, and A. G. Ebadi, “Preliminary study for bioconversion of water hyacinth (Eichhornia crassipes) to bioethanol”, Afr. J. Biotechnol., vol. 11, no.21, pp. 4921-4928, 2012.
[17] G. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem., vol. 31, no. 3, pp. 426-428, 1959.
[18] A. Kuila, M. Mukhopadhyay, D. K. Tuli, and R. Banerjee, “Production of ethanol from lignocellulosics: an enzymatic venture”, EXCLI J., vol. 10, pp.85-96, 2011.
[19] M. Orozco, and S. Thienhaus, “Efecto de la gallinaza en plantaciones de cacao (Theobroma cacao L.) en desarrollo”, Agron. Mesoam., vol. 8, pp. 81-92, 1997.
[20] T. J. Bruno, and P. D. N. Svoronos, Handbook of Basic Tables for Chemical Analysis, 2nd ed. Boca Raton, USA: CRC Press, ch. 12
[21] L. O. Zumaqué, C. L. Mantilla, M. M. Pantoja, “Levaduras autóctonas con capacidad fermentativa en la producción de etanol a partir de pulpa de excedentes de plátano Musa (AAB Simmonds) en el departamento de Córdoba, Colombia”,Rev. Colomb. Biotecnol., vol. XI, no.1, pp. 40-47, 2009.
[22] W. Borzani, “Batch ethanol fermentation: the correlation between the fermentation efficiency and the biomass initial concentration depends on what is considered as produced ethanol”, Braz. J. Microbiol., vol. 37, pp. 87-89, 2006.
[23] H. I. Castaño, and C. Mejía, “Producción de etanol a partir de almidón de yuca utilizando la estrategia de proceso sacarificación- fermentación simultánea (SSF)”, Revista Vitae, vol. 15, no.2, pp. 251-258, 2008.
[24] M. Asyraf, L. Soh, N. Abu, A. Abdul, and R. Mat, “Bioethanol production from enzymatically saccharified empty fruit bunches hydrolysate using Saccharomyces cerevisiae”, Res. J. Environ. Sci., vol. 5, no. 6, pp. 573-586, 2011.
[25] B. Stackler, and E. N. Christensen, “Quantitative determination of Ethanol in Wine by Gas Chromatography”, Am. J. Enol. Viticult., vol. 25, no.4, pp. 202-207, 1974.
[26] S. Hyun-Beom, K. Hyun-Joo, L. Oh-Kyu, H. Ji-Hye, L. Hyeon-Yong, and J. Kyung-Hwan, “Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process”, J Ind Microbiol. Biotechnol., vol. 36, pp. 285–292, 2009.
[27] J.A. Barnett, R. W. Payne, and D. Yarrow, Yeasts: Characteristics and Identification, 3rd ed. Cambridge, UK: Cambridge University Press, 2000.
[28] W.C. Winn, S. D. Allen, W. M. Janda, E. W. Koneman, G. W. Procop, P. C. Schrenckenberger, Diagnostico Microbiológico, 6th ed. Buenos Aires, Argentina: Editorial Medica Panamericana S.A, 2008.
[29] R. Hossain, M. K. Chowdhury, S. Yeasmin, M. M. Hoq, “Production of Ethanol Using Yeast Isolates on Water Hyacinth and Azolla. Bangladesh”, J. Microbiol., vol. 27, no. 2, pp. 56-60, 2010.
[30] A. P. Redding, Z. Wang, D. R. Keshwani, J. J. Cheng, “High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis”, Bioresource Technol., vol. 102, no. 2, pp. 1415–1424, 2011.
[31] A. Kumar, L.K. Singh, S. Ghosh, “Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis”, Bioresource Technol., vol. 100, pp. 3293–3297, 2009.
[32] A. F. Abdel-Fattah, and M. A. Abdel-Naby, “Pretreatment and enzymic saccharification of water hyacinth cellulose”, Carbohyd. Polym., vol. 87, no. 3, pp. 2109–2113, 2012.
[33] A. R. Caparanga, and J. R. M. Oxales, “Chemical Pretreatment and Fermentation of Water Hyacinth (Eichhornia crassipes) At Its Optimum Age”, in Annual Meeting: International Congress on Energy (ICE), 2012. Available on: https://aiche.confex.com/aiche/2012/ webprogrampreliminary/Paper270192.html.
[34] M.F. Begum, and A. R Alimon, “Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production”, Electron. J. Biotechnol, vol. 14, no.5, 2011. Available on: http://www.ejbiotechnology.info/index.php/ ejbiotechnology/article/viewFile/v14n5-3/1366.
[35] D.J. Ahn, S. K. Kim, H. S. Yun, “Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae”. Bioprocess Biosyst. Eng., vol. 35, no.1-2, pp. 35-41, 2012.
[36] X. Mena-Espino, F. Barahona-Pérez L. Alzate-Gaviria, R. Rodríguez-Vázquez , M. Tzec-Simá, J. Domínguez-Maldonado, and B. B. Canto-Canché, “Saccharification with Phanerochaete chrysosporium and Pleurotus ostreatus enzymatic extracts of pretreated banana waste”, Afr. J. Biotechnol., vol. 10, no.19, pp. 3824-3834, 2011.
[37] S. Mukhopadhyay, and N. C. Chatterjee, Bioconversion of water hyacinth hydrolysate into ethanol. Bioresources, vol. 5, no 2, pp. 1301-1310, 2010.
[38] B. Sornvoraweat, and J. Kongkiattikajorn, “Separated hydrolysis and fermentation of water hyacinth leaves for ethanol production”, KKU Res. J., vol.15, no. 9, pp. 794-802, 2010.
[39] D. Mishima, M. Kuniki, K. Sei, S. Soda, M. Ike, and M. Fujita, “Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technol., vol. 99, pp. 2495–2500, 2008.
[40] G. Dragone, S. I. Mussatto, J. M. Oliveira, and J. A. Teixeira, “Characterization of volatile compounds in an alcoholic beverage produced by whey fermentation”, Food Chem., vol. 112, pp. 929–935, 2009.
[41] S. Y. Lee, P. J. Hwan, J. S. Hee, L. K Nielsen., K. Jaehyun, and K. S. Jung, “Fermentative Butanol Production by Clostridia”, Biotechnol. Bioeng., 101 (2): 209-228, 2008.
[42] N. Qureshi, B. C. Saha, B. Dien, E. H. Ronald, M. A. Cotta, “Production of butanol (a biofuel) from agricultural residues: Part I – Use of barley straw hydrolysate”, Biomass Bioenerg., vol. 34, pp. 559–565, 2010.
[43] J. R. M. Almeida, L. C. L. Favaro, B. F. Quirino, “Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste”, Biotechnol. Biofuels, vol. 5, no. 48, 2012. Available on: http://www.biotechnologyforbiofuels.com/content/ pdf/1754-6834-5-48.pdf.