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Abstract—In this paper, the backward MPSD (Modified Pre-
conditioned Simultaneous Displacement) iterative matrix is firstly
proposed. The relationship of eigenvalues between the backward
MPSD iterative matrix and backward Jacobi iterative matrix for block
p-cyclic case is obtained, which improves and refines the results in
the corresponding references.
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I. INTRODUCTION

TO solve the equations

Ax = b, (1)

where A = [aij ] is a given n × n complex matrix and
nonsingular, n ≥ 2, which is partitioned in the form

A =

⎡
⎢⎢⎢⎣

A1,1 A1,2 · · · A1,p

A2,1 A2,2 . . . A2,p

...
...

. . .
...

Ap,1 Ap,2 · · · Ap,p

⎤
⎥⎥⎥⎦ ,

iterative methods are considered.

Let A = D − CL − CU where D = diag(A) is a block
diagonal matrix obtained from A and nonsingular, −CL and
−CU are strictly lower and upper triangular matrices obtained
from A, respectively. We also let L = D−1CL, U = D−1CU .
The equation (1) becomes the equivalent one

(I − L − U)x = D−1Ax = D−1b.

The Jacobi iterative matrix is

B = L + U = I − D−1A.

The MPSD (Modified Preconditioned Simultaneous Displace-
ment) iterative method is studied in [2-5]. Here, we give the
backward MPSD iterative matrix as follows:

S̃τ,ω1,ω2 = (I − ω1U)−1(I − ω2L)−1[(1 − τ)I + (τ − ω1)U
+(τ − ω2)L + ω1ω2LU ],

with special values of ω1, ω2 and τ , we have
(1) When ω1 = 0, ω2 = 0 and τ = 1, we obtain the Jacobi

iterative method;
(2) When ω1 = 0, ω2 = 0 and τ = ω, we obtain the

backward JOR iterative method;
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(3) When ω1 = 1, ω2 = 0 and τ = 1, we obtain the
backward G-S iterative method;

(4) When ω1 = ω, ω2 = 0 and τ = ω, we obtain the
backward SOR iterative method;

(5) When ω1 = ω, ω2 = 0 and τ = α, we obtain the
backward AOR iterative method;

(6) When ω1 = ω, ω2 = ω and τ = ω(2 − ω), we obtain
the backward SSOR iterative method;

(7) When ω1 = ω, ω2 = ω and τ = ω, we obtain the
backward EMA iterative method;

(8) When ω1 = ω, ω2 = ω and τ = α, we obtain the
backward PSD iterative method;

(9) When ω1 = ω, ω2 = ω and τ = 1, we obtain the
backward PJ iterative method.

If A has the following block form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1,1 A1,2 0 · · · 0
0 A2,2 A2,3 . . . 0
...

...
. . . . . .

...
...

...
. . . Ap−1,p

Ap,1 0 · · · · · · Ap,p

⎤
⎥⎥⎥⎥⎥⎥⎦

,

then A is called a p-cyclic matrix [1]. Such matrices naturally
arise, e.g., for p = 2 in the discretization of second-order
elliptic or parabolic PDEs by finite differences, finite element
or collocation methods, for p = 3 in the case of large scale
least-squares problems, and for any p ≥ 2 in the case of
Markov chain analysis. The p-cyclic matrix is considered in
many papers [1, 6-13]. The eigenvalue relationship between
the SOR iterative matrix and the Jacobi iterative matrix for p-
cyclic case is studied in Theorem 4.5 in [1], and the eigenvalue
relationship between the USAOR iterative matrix and the
Jacobi iterative matrix for the p-cyclic case is studied in [6].
In the following we will consider the eigenvalue relationship
between the backward MPSD iterative matrix and the Jacobi
iterative matrix for the p-cyclic case.

II. PRELIMINARY
If A is a p-cyclic matrix, then

D =

⎡
⎢⎢⎢⎣

A1,1

A2,2

. . .
Ap,p

⎤
⎥⎥⎥⎦ , CL =

⎡
⎢⎢⎢⎣

0
0 0
...

. . .
−Ap,1 · · · 0

⎤
⎥⎥⎥⎦ ,

CU =

⎡
⎢⎢⎢⎢⎢⎣

0 −A1,2

0 −A2,3

. . . . . .
0 −Ap−1,p

0

⎤
⎥⎥⎥⎥⎥⎦ ,
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and

L = D−1CL =

⎡
⎢⎢⎢⎣

0
0 0
...

. . .
Bp,1 · · · 0

⎤
⎥⎥⎥⎦ ,

U = D−1CU =

⎡
⎢⎢⎢⎢⎢⎣

0 B1,2

0 B2,3

. . . . . .
0 Bp−1,p

0

⎤
⎥⎥⎥⎥⎥⎦ .

Let λ be the eigenvalue of S̃τ,ω1,ω2 , x be the corresponding
eigenvector. Then

S̃τ,ω1,ω2x = λx,

equivalently,

(I−ω1U)−1(I−ω2L)−1[(1−τ)I+(τ−ω1)L+(τ−ω2)L+ω1ω2LU ] = λx,

or

[(1−τ)I+(τ−ω1)U+(τ−ω2)L+ω1ω2LU ]x = λ(I−ω2L)(I−ω1U)x,

that is to say,⎡
⎢⎢⎢⎢⎢⎣

(1 − τ)I1 (τ − ω1)B1,2

(1 − τ)I2
. . .

. . .
(τ − ω1)Bp−1,p

(τ − ω2)Bp,1 ω1ω2Bp,1B1,2 (1 − τ)Ip

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xp

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

I1
I2

. . .
−ω2Bp,1 Ip

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1 − ω1B1,2x2

x2 − ω1B2,3x3

...
xp−1 − ω1Bp−1,pxp

xp

⎤
⎥⎥⎥⎥⎥⎦ ,

(2)

where

LU =

⎡
⎢⎢⎢⎣

0
0

. . .
0 Bp,1B1,2 · · · 0

⎤
⎥⎥⎥⎦ .

If μ is an eigenvalue of B and x is the corresponding
eigenvector, that is,⎡
⎢⎢⎢⎢⎢⎣

0 B1,2

0 B2,3

. . .
. . .
0 Bp−1,p

Bp,1 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xp

⎤
⎥⎥⎥⎦ = μ

⎡
⎢⎢⎢⎣

x1

x2

...
xp

⎤
⎥⎥⎥⎦ .

(3)

III. MAIN RESULTS

The relationship of eigenvalues between backward MPSD
and Jacobi iterative matrices is given as follows:

Theorem 3.1 Let A be a p-cyclic matrix, B be the cor-
responding the block Jacobi iterative matrix. If μ �= 0 is an
eigenvalue of B and λ satisfies

μp{(τ − ω1 + λω1)p−2[(λ + τ − 1)(1 − λ)ω1ω2

+(τ − ω1 + λω1)(τ − ω2 + λω2)]} = (λ + τ − 1)p.
(4)

Then λ is an eigenvalue of the backward MPSD iterative
matrix S̃τ,ω1,ω2 . Conversely, if λ is an eigenvalue of S̃τ,ω1,ω2

with λ + τ − 1 �= 0, then there exists an eigenvalue μ of B
satisfying (4).

Proof. Let λ be the eigenvalue of S̃τ,ω1,ω2 , x be the
corresponding eigenvector. By (2), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − τ)x1 + (τ − ω1)B1,2x2 = λx1 − λω1B1,2x2,
(1 − τ)x2 + (τ − ω1)B2,3x3 = λx2 − λω1B2,3x3,

...
(1 − τ)xp−1 + (τ − ω1)Bp−1,pxp = λxp−1 − λω1Bp−1,pxp,

(τ − ω2)Bp,1x1 + ω1ω2Bp,1B1,2x2(1 − τ)xp

= λ [−ω2Bp,1(x1 − ω1B1,2x2) + xp] ,

equivalently, let η = λ + τ − 1, ξi = τ − ωi + λωi, i = 1, 2,
we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ηx1 = ξ1B1,2x2,
ηx2 = ξ1B2,3x3,

...
ηxp−1 = ξ1Bp−1,pxp,
ηxp = (1 − λ)ω1ω2Bp,1B1,2x2 + ξ2Bp,1x1.

(5)

From the first n − 2 equations, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η2x1 = ξ2
1B1,2B2,3x3,

η3x1 = ξ3
1B1,2B2,3B3,4x4,

...
ηp−2x1 = ξp−2

1 B1,2B2,3 · · ·Bp−2,p−1xp−1,

(6)

and from the last two equations and the first equation, we have

η2xp−1 = ξ1Bp−1,pηxp
= ξ1Bp−1,p[(1 − λ)ω1ω2Bp,1B1,2x2 + ξ2Bp,1x1]
= ξ1ξ2Bp−1,pBp,1x1 + (1 − λ)ω1ω2Bp−1,pBp,1

ξ1B1,2x2

= [η(1 − λ)ω1ω2 + ξ1ξ2]Bp−1,pBp,1x1.
(7)

Combining (6) with (7), we have

η2ηp−2x1 = η2ξp−2
1 B1,2B2,3 · · ·Bp−3,p−2Bp−2,p−1xp−1

= ξp−2
1 B1,2B2,3 · · ·Bp−3,p−2Bp−2,p−1η

2xp−1

= ξp−2
1 B1,2B2,3 · · ·Bp−3,p−2Bp−2,p−1[η(1 − λ)ω1ω2

+ξ1ξ2]Bp−1,pBp,1x1

= ξp−2
1 [η(1 − λ)ω1ω2 + ξ1ξ2]B1,2B2,3 · · ·Bp−3,p−2

Bp−2,p−1Bp−1,pBp,1x1,

ηpx1 = ξp−2
1 [η(1 − λ)ω1ω2 + ξ1ξ2]B1,2B2,3 · · ·Bp−3,p−2

Bp−2,p−1Bp−1,pBp,1x1.
(8)

Assuming that λ + τ − 1 �= 0.
If x1 = 0, then, by (5), we have xp = xp−1 = · · · = x2 =

x1 = 0. But x is an eigenvector, so x1 �= 0. By (8), we know
that

ηp

ξp−2
1 [η(1 − λ)ω1ω2 + ξ1ξ2]

is an eigenvalue of B1,2B2,3 · · ·Bp−2,p−1Bp−1,pBp,1 and x1

is the corresponding eigenvector.
If μ is an eigenvalue of B and x is the corresponding

eigenvector, by (3) we obtain

B1,2x2 = μx1,
B2,3x3 = μx2,

...
Bp−1,pxp = μxp−1,
Bp,1x1 = μxp.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:8, 2013 

1359International Scholarly and Scientific Research & Innovation 7(8) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:7
, N

o:
8,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
68

34
/p

df



From the above equations, we have

B1,2B2,3B3,4x4 = μ3x1,
...

B1,2B2,3B3,4 · · ·Bp−1,pxp = μp−1x1.

So, ⎧⎨
⎩

μB1,2B2,3B3,4 · · ·Bp−1,pxp = μpx1,
B1,2B2,3B3,4 · · ·Bp−1,pμxp = μpx1,
B1,2B2,3B3,4 · · ·Bp−1,pBp,1x1 = μpx1.

(9)

Hence, μp is an eigenvalue of B1,2B2,3B3,4 · · ·Bp−1,pBp,1.

Combining (8) with (9), we obtain that

μp =
ηp

ξp−2
1 [η(1 − λ)ω1ω2 + ξ1ξ2]

,

i.e.,
μp{ξp−2

1 [η(1 − λ)ω1ω2 + ξ1ξ2]} = ηp. (10)

So, if λ is an eigenvalue of S̃τ,ω1,ω2 , then there exists an
eigenvalue μ of B satisfying (10). Conversely, if μ is an
eigenvalue of B and λ satisfies (10), we can easily prove that
λ is an eigenvalue of S̃τ,ω1,ω2 . Thus, we proved the Theorem
3.1. �

With the special values of ω1, ω2 and τ , we have several
corollaries, which improve and refine the results in the
corresponding references.

Corollary 3.1 Let A be a p-cyclic matrix, B be the
corresponding Jacobi iterative matrix. If μ �= 0 is an
eigenvalue of B and λ satisfies

μpωp = (λ + ω − 1)p. (11)

Then λ is an eigenvalue of the backward JOR iterative
matrix Sω,0,0. Conversely, if λ is an eigenvalue of Sω,0,0
with λ + ω − 1 �= 0, then there exists an eigenvalue μ of B
satisfying (11).

Corollary 3.2 Let A be a p-cyclic matrix, B be the
corresponding Jacobi iterative matrix. If μ is an eigenvalue
of B, μ �= 0, and λ satisfies

μp = λ. (12)

Then λ is an eigenvalue of the backward Gauss-Seidel
iterative matrix S1,1,0. Conversely, if λ is an eigenvalue of
S1,1,0 for which λ �= 0, then there must exist an eigenvalue μ
of B satisfying (12).

Corollary 3.3 Let A be a p-cyclic matrix, B be the
corresponding Jacobi iterative matrix. If μ �= 0 is an
eigenvalue of B, and λ satisfies

λp−1μpωp = (λ + ω − 1)p. (13)

Then λ is an eigenvalue of the backward SOR iterative
matrix Sω,ω,0. Conversely, if λ is an eigenvalue of Sω,ω,0
with λ + ω − 1 �= 0, then there exists an eigenvalue μ of B
satisfying (13).

Corollary 3.4 Let A be a p-cyclic matrix, B be the
corresponding Jacobi iterative matrix. If μ �= 0 is an
eigenvalue of B and λ satisfies

μpα(α − ω + λω)p−1 = (λ + α − 1)p. (14)

Then λ is an eigenvalue of the backward AOR iterative
matrix Sα,ω,0. Conversely, if λ is an eigenvalue of Sα,ω,0
with λ + α − 1 �= 0, then there exists an eigenvalue μ of B
satisfying (14).

Corollary 3.5 Let A be a p-cyclic matrix, B be the
corresponding Jacobi iterative matrix. If μ �= 0 is an
eigenvalue of B and λ satisfies

[λ − (ω − 1)2]p = μp{[ω((1 + λ) − ω)]p−2[(λ + ω − 1)(1 − λ)ω2

+[ω((1 + λ) − ω)]2}.
(15)

Then λ is an eigenvalue of the backward SSOR iterative
matrix Sω(2−ω),ω,ω . Conversely, if λ is an eigenvalue of
Sω(2−ω),ω,ω for which λ + (ω − 1)2 �= 0, then there exists an
eigenvalue μ of B satisfying (15).

Corollary 3.6 Let A be a p-cyclic matrix, B be the
corresponding Jacobi iterative matrix. If μ �= 0 is an
eigenvalue of B and λ satisfies

(λ+ω−1)p = μp{(λω)p−2[(λ+ω−1)(1−λ)ω2+(λω)2]}. (16)

Then λ is an eigenvalue of the backward EMA iterative
matrix Sω,ω,ω . Conversely, if λ is an eigenvalue of Sω,ω,ω
with λ + ω − 1 �= 0, then there exists an eigenvalue of B
satisfying (16).

Corollary 3.7 Let A be a p-cyclic matrix, B be the
corresponding Jacobi iterative matrix. If μ �= 0 is an
eigenvalue of B and λ satisfies

(λ+α−1)p = μp{(α−ω+λω)p−2[(λ+α−1)(1−λ)ω2+(α−ω+λω)2]}.
(17)

Then λ is the eigenvalue of the backward PSD iterative
matrix Sα,ω,ω . Conversely, if λ is an eigenvalue of Sα,ω,ω
with λ + α − 1 �= 0, then there exists an eigenvalue μ of B
satisfying (17).

Corollary 3.8 Let A be a p-cyclic matrix, B be the
corresponding Jacobi iterative matrix. If μ �= 0 is an
eigenvalue of B and λ satisfies

λp = μp{(1−ω+λω)p−2[λ(1−λ)ω2+(1−ω+λω)2]}. (18)

Then λ is an eigenvalue of the backward PJ iterative matrix
Sω,ω,1. Conversely, if λ is an eigenvalue of Sω,ω,1 for which
λ �= 0, then there exists an eigenvalue μ of B satisfying (18).

IV. NUMERICAL EXAMPLE

Example 4.1 Let the coefficient matrix A of (1) be

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0 −0.125 −0.125 0 0
0 1 −0.125 −0.125 0 0
0 0 1 0 −0.125 −0.125
0 0 0 1 −0.125 −0.125

−0.125 −0.125 0 0 1 0
−0.125 −0.125 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

It is obvious that A is 3-cyclic matrix. By caculation, we
obtain μ = 1

4 is an eigenvalue of the Jacobi matrix B.
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(1)By calculation, we can get that λ = 1
64 is an eigenvalue

of the backward Gauss-Seidel matrix, and

μ3 = (
1
4
)3 =

1
64

= λ.

So, the asymptotic rate of convergence of the backward
Gauss-Seidel iteration is triple that of the Jacobi iteration.

(2)With ω2 = 0, ω1 = 1
2 ,τ = 1, we obtain the backward

AOR iterative method. By calculation, λ = 669
3814 is an

eigenvalue of the backward AOR matrix. Meanwhile
the equation μ3α(α − ω + λω)3−1 = (λ + α − 1)3 equals
to 256λ3−λ2−2λ−1 = 0, and λ = 669

3814 is just the root of it.

(3)The numerical results between other iterative method and
the Jacobi iterative method is analogous to the above, and is
omitted.

V. CONCLUSION

The eigenvalue relationship is vital for the convergence
of iterative methods. In this paper, the backward MPSD
iterative matrix is proposed, and the relationship of eigenvalues
between backward MPSD and Jacobi iterative matrices for p-
cyclic case is obtained, which is useful to some issues such
as Markov Chains,etc. These results involves some special
iterative methods which are proposed in the references.
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