
 

 

  
Abstract—The effect of internal heat generation is applied to the 

Rayleigh-Benard convection in a horizontal micropolar fluid layer. 
The bounding surfaces of the liquids are considered to be rigid-free, 
rigid-rigid and free-free with the combination of isothermal on the 
spin-vanishing boundaries. A linear stability analysis is used and the 
Galerkin method is employed to find the critical stability parameters 
numerically. It is shown that the critical Rayleigh number decreases 
as the value of internal heat generation increase and hence destabilize 
the system.  
 

Keywords—Internal heat generation, micropolar fluid, rayleigh-
benard convection.  

I. INTRODUCTION 
HE microfluids, a subclass of generalized fluids are 
introduced and developed for the first time by Eringen 

[1]. These are fluids body moments and are influenced by the 
spin inertia. The stress tensor for such fluids is non-
symmetric. Eringen’s theory has provided a good model to 
study a number of complicated fluids, including the flow of 
low concentration suspensions, liquid crystal, blood and 
turbulent shear flows. Several special forms of this theory [2]-
[3] have also been given by Eringen. Later, Eringen [4] has 
also developed a continuum theory of dense rigid suspensions, 
when the substructure particles are assumed to be rigid; the 
special form of the above theory is called the theory of 
micropolar fluids. Eringen [5] introduced a subclass of micro-
fluids named micropolar fluids, which exhibit micro-rotational 
inertia. This class of fluids posses a certain simplicity and 
elegance in their mathematical formulation and are more 
easily amenable to solution, which obviously is more 
attractive for applied mathematicians. Thermal effects in 
microfluids have also been discussed by Eringen [6]. These 
have been again specialized to generate a theory of isotropic 
thermomicropolar fluids suspensions, polymeric fluids, 
turbulent and blood flow. 

The classical Rayleigh problem on the onset of convective 
instabilities in a horizontal layer of fluid heated from below 
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has its origin in the experimental observations of Benard [7] 
and [8]. Convection has been the subject of many 
investigations due to the related engineering applications such 
as crystal growth, weld penetration and in coating process. A 
theory and modeling of material processing in the laboratory 
may include the mechanism of suppressing free convection 
driven by both buoyancy and surface tension forces. 
Rayleigh’s paper is the pioneering work for almost all modern 
theories of convection. Rayleigh [9] showed that Benard 
convection, which is caused by buoyancy effects, will occur 
when the Rayleigh number exceeds a critical value. Walzer 
[10] analyzed the problem of convective instability of a 
micropolar fluid layer confined between two rigid boundaries 
and pointed out that the analysis of the instability finds 
applications in the area of geophysics. One of the examples is 
the understanding of the phenomena of the rising of volcanic 
liquid with bubbles and convective processes inside the 
earth’s mantle. The onset of convection for a heat conducting 
micropolar fluid layer between two rigid boundaries is 
investigated by Rama Rao [11]. Sastry and Rao [12], Qin and 
Kaloni [13] studied the instability of a rotating micropolar 
fluid. The universal stability of magneto micropolar fluids was 
studied by Ahmadi and Shahinpoor [14]. Effect of through 
flow on Marangoni convection in micropolar fluid is 
investigated by Murty and Rao [15]. The magnetoconvection 
in micropolar fluid is micropolar fluid was studied by 
Siddeshwar and Pranesh [16]. 

Vidal and Acrivos [17], Debler and Wolf [18] and Nield 
[19] studied the effect of a non-uniform temperature gradient 
on the onset of Marangoni convection. Rudraiah and 
Siddeshwar [20] analyzed the effects of non-uniform 
temperature gradients of parabolic and stepwise-types on the 
onset of Marangoni convection. Rudraiah [21] and Friedrich 
and Rudraiah [22] have examined the combine effect of 
rotation and non-uniform basic temperature gradient on 
Marangoni convection. The effects of non-uniform basic 
temperature gradient on Benard-Marangoni convection were 
studied by Lebon and Cloot [23]. The combined effects of 
non-uniform temperature gradient and Coriolis force (due 
rotation) on the Benard-Marangoni convection were analyzed 
by Rudraiah and Ramachandramurty [24]. As for the non-
uniform basic temperature in a micropolar fluid, these 
researchers [25]-[30] have studied the individual effects. 

The nonlinear temperature distribution in a horizontal fluid 
layer arising due to internal heat generation has been studied 
theoretically by Sparrow et.al [31] and Roberts [32]. The 
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effects of quadratic basic state temperature gradient caused by 
uniform internal heat generation were first addressed by Char 
and Chiang [33] for Benard-Marangoni convection. Wilson 
[34] used a combination of analytical and numerical 
techniques to analyze the effect of internal heat generation on 
the onset of Marangoni convection. Bachok and Arifin [35] 
studied the feedback control of the Marangoni-Benard 
convection in the presence of internal heat generation. The 
inverted parabolic temperature profile in a simulated 
microgravity as it increases critical Marangoni number 
making the system more stable. Also the electrical conducting 
micropolar fluid layer heated from below is more stable 
compared to the electrically conducting viscous fluid.  

The present study deals with internal heat generation on the 
onset of Rayleigh-Benard convection in micropolar fluid. This 
analysis based on the linear stability theory and the resulting 
eigenvalue problem is solved numerically using the Galerkin 
technique with lower and upper boundary conditions that are 
rigid-free, rigid-rigid and free-free. 

II. MATHEMATICAL FORMULATION 
Consider an infinite horizontal layer of micropolar fluid of 

depth d, where the fluid is heated from below with the internal 
heat generation exists with the fluid system. The stability of a 
horizontal layer of micropolar fluid in the presence of internal 
heat generation is examined. The no-spin boundary condition 
is assumed for micro-rotation at the boundaries. Let TΔ  be 
the temperature difference between the lower and upper 
surfaces with the lower boundary at a higher temperature than 
the upper boundary. These boundaries maintained at constant 
temperature. 

The upper free surface is assumed to be non-deformable 
and the governing equations for the Rayleigh-Benard situation 
in Boussinesquian micropolar fluid are continuity equation; 

 

    0,q
→

∇ ⋅ =                                         (1) 
 
conservation of linear momentum 
 

   

( )

^

0

22 ,

q q q p g k
t

q

ρ ρ

ζ η ζ ω

→
→ →

→ →

⎡ ⎤∂ ⎛ ⎞⎢ ⎥+ ⋅ ∇ = −∇ −⎜ ⎟⎢ ∂ ⎥⎝ ⎠
⎣ ⎦

⎛ ⎞+ + ∇ + ∇ ×⎜ ⎟
⎝ ⎠

                   (2) 

conservation of angular momentum 
 

( )0

2 2 ,

I q
t

q

ωρ ω λ η ω

η ω ζ ω

→
→ → →

→ → →

⎡ ⎤∂ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ′ ′+ ⋅ ∇ = + ∇ ∇ ⋅⎜ ⎟ ⎜ ⎟⎢ ∂ ⎥⎝ ⎠ ⎝ ⎠
⎣ ⎦

⎛ ⎞ ⎛ ⎞′+ ∇ + ∇ × −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

               (3) 

 
conservation of energy 

       2

0

,g
v

T q T T T h
t C

β ω κ
ρ

→ →∂ ⎛ ⎞ ⎛ ⎞+ ⋅ ∇ = ∇ × ⋅ ∇ + ∇ +⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
 (4) 

 
density equation of state 

       ( )0 1 ,aT Tρ ρ α= − −⎡ ⎤⎣ ⎦                            (5) 

 

where q
→

 is the velocity, 0ρ  is the density at aT , t  is the 

time, p  is the pressure term, g  is the gravity, 
^
k  is the unit 

vector in z-direction, ζ  is the coupling viscosity coefficient 
for vortex viscosity, λ  and η  is the bulk and shear kinematic 

viscosity coefficients, ω
→

 is the micro rotation, I  is the 
moment of inertia, λ′  and η′  is the bulk and shear spin-
viscosity coefficients, T  is the temperature, β  micropolar 
heat conduction parameter, Cν  is the specific heat, κ  is the  
thermal conductivity, gh  is the overall uniformly distributed 
volumetric internal heat generation within the micropolar fluid 
layer.   
 The basic state of the fluid is quiescent and described by 

( )0, 0, 0 ,bq
→

= ( )0, 0, 0 ,bω
→

= ( ) ,bp p z=  and ( ) ,bT T z= (6) 

where the subscript b denotes the basic state. Substituting (6) 
into (2) and (4), we get the basic state governing equations as 
 

         ,b
b

dp
g

dz
ρ= −              (7) 

                                 
2

2 ,gb hd T
dz κ

= −                                 (8) 

with 
                                      [ ]0 1 ( ) .aT Tρ ρ α= − −  (9) 
 

Subject to the boundary conditions, 0bT T=  and 0z = , and 

0bT T T= − Δ  at z d= , then (8) is solved and we obtained 
 

                  2
0( ) .

2 2
g g

b

h h d TT z z z T
dκ κ

⎛ ⎞Δ
= − + − +⎜ ⎟

⎝ ⎠
        (10) 

 
Take note that (10) is a parabolic distribution with the 

liquid layer height due to the existence of the internal heat 
generation; 0Q = , the basic state temperature distribution in 
the fluid layer is linear. Let the basic state be distributed by an 
infinitesimal thermal perturbation and we now have 

 

,bq q q
→ → →

′= +  ,bω ω ω
→ → →

′= + ,bp p p
→ → →

′= +  and ,bT T T ′= +  (11) 
 
where the primes indicate that the quantities are infinitesimal 
perturbations. Substituting (11) into (1)-(4), we obtained the 
linearized equations in the form 
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                                               0,q′∇ ⋅ =  (12) 

               
^

2(2 ) ( ) 0,p g k qρ ζ η ζ ω′ ′ ′ ′−∇ − + + ∇ + ∇× =  (13) 

            2( ) ( ) ( 2 ) 0,qλ η ω η ω ζ ω′ ′ ′ ′ ′ ′ ′+ ∇ ∇ ⋅ + ∇ + ∇× − =  (14) 

                  

^
2

0

.
2

g g

T k T T
C d

zh dh T TW W
d d

ν

β ω κ
ρ

κ κ

⎡ Δ ⎤⎛ ⎞′ ′∇× ⋅ − ⋅∇ + ∇⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞Δ Δ

+ − + = −⎜ ⎟
⎝ ⎠

 (15) 

 
The perturbations of (11)-(15) are non-dimensionalised 

using the following definitions 
 
* * *( , , ) , , ,x y zx y z

d d d
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 * ,WW
x

d

′
=  *

2

( ) ,z
x

d

ω′∇×
Ω =  

and * .TT
T
′

=
Δ

                                                                      (16) 

 
Substituting (16) into (13)-(15), eliminating the pressure 

term by operating curl twice on the resulting (13), operating 
curl once on (14) and non-dimensionalising, we get 

 

            
2 2

4 2
1 1 2 2(1 ) 0,T TN W N Ra

x y
⎡ ⎤∂ ∂

+ ∇ + ∇ Ω + + =⎢ ⎥∂ ∂⎣ ⎦
     (17) 

                             2 2
3 1 12 0,N N N W∇ Ω − Ω − ∇ =  (18) 

                         [ ]2
51 (1 2 ) 0,Q z W N∇ Θ + − − − Ω =  (19) 

 
where the asterisks have been dropped for simplicity. Here 

1N ζ
η ζ

=
+

 is the coupling parameter, 

3 2( )
N

d
η

η ζ
′

=
+

 is the couple stress parameter, 

5 2
0

N
C dν

β
ρ

=  is the micropolar heat conduction parameter, 

3
0

( )
g T d

Ra
α ρ

η ζ χ
Δ

=
+

 is the Rayeligh number, 

and 
2

2
gh d

Q
Tκ

=
∇

 is the heat source strength. 

 
The perturbation quantities in a normal mode form are 
 

[ ]( , , ) ( ), ( ), ( ) exp ( ) ,x yW T W z z G z i a x a y⎡ ⎤Ω = Θ +⎣ ⎦       (20) 

 
where ( )W z ,  ( )Q z  and ( )G z  are amplitudes of the 
perturbations of vertical velocity, temperature and spin, and 

2 2
x ya a a= +  is the wave number of the disturbances at the 

liquid layer. Substituting (20) into (17)-(19), we get 
 

           2 2 2 2 2 2
1 1(1 )( ) ( ) ,N D a W N D a G Ra+ − + − = Θ  (21) 

             2 2 2 2
1 3( ) 2 ( ) 0,N D a W G N D a G⎡ ⎤− + − − =⎣ ⎦  (22) 

              [ ]2 2
5( ) (1 2 ) 1 0,D a Q z W N G− Θ − − − − =  (23) 

 

where .dD
dz

=   

 
Equations (21)-(23) are solved subject to appropriate 

boundary conditions that are 
 

                              0W DW G= = =  at 0,z =  (24) 
 
For upper free boundary 
 
                         2 0W D G D W= Θ = = =  at 1,z =  (25) 
 
For upper rigid boundary 
 
                           0W D G DW= Θ = = =  at 1.z =  (26) 

III. METHOD OF SOLUTION 
Equations (21)-(23) are solved subject to the appropriate 

boundary conditions. The single-term Galerkin technique is 
used to find the critical eigenvalue. Multiply (21) by ( )iW z , 
(22) by ( )i zΘ  and (23) by ( )iG z  respectively. Perform the 
integration by parts with respect to z  between 0z =  and 

1z =  for the resulting equations. By using the appropriate 
boundary conditions, the expression for the Rayleigh number 
is given by  

                    
[ ]4 3 2 1 6

2
8 1 5 2 7

( )
,

( )
C C C C C

Ra
a C C C C C

−
=

⎡ ⎤−⎣ ⎦
                 (27) 

 
where 

2
1 1 ,C N DW DG a WG⎡ ⎤= − +⎣ ⎦  

2 2 2
2 1 3 3(2 ) ( ) ,C G N N a N DG= + +  

2 2 2 2 4 2
3 1(1 ) ( ) 2 ( ) ,C N D W a DW a W⎡ ⎤= − + + +⎣ ⎦  

2 2 2
4 ( ) ,C D a= Θ + Θ  

5 5 ,C N G= − Θ  
2

6 1 ,C N DG DW a GW⎡ ⎤= +⎣ ⎦  

[ ]7 1 (1 2 ) ,C Q z W= − − Θ  

8 ,C W= Θ  
 
where the angle bracket ...  denotes the integration by parts 
with respect to z  from 0  to 1 . 

IV. RESULT AND DISCUSSION 
The criterion for the onset of Rayleigh-Benard convection 
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in micropolar fluid in the presence of internal heat generation 
is investigated theoretically. The sensitiveness of critical 
Rayleigh number; Rac to the changes in the micropolar fluid 
parameters; N1, N3 and N5 are also studied. Three cases are 
involved in the system, which are rigid-free, rigid-rigid and 
free-free surfaces respectively. 

Table I shows the comparison of the critical Rayleigh 
number; Rac for different values of coupling parameter; N1 
and internal heat generation effect; Q, when N3 = 2 and N5 = 1. 
Our findings are compared with Siddeshwar and Pranesh [16] 
for 0Q =  and the results are in a good agreement. We 
proceed by substituting Q = 1, Q = 3, Q = 5 and we found that 
the critical Rayleigh number decreasing when we increase the 
values of Q, for all N1 values considered. Treating Ra as the 
critical parameter, we find that the effect of increasing Q in 
micropolar fluid is to destabilize the system. 

 

  
Table II shows the comparison of the critical Rayleigh 

number; Rac with internal heat generation; Q for three 
different types of surfaces. It can be clearly seen that the 
critical Rayleigh number; Rac values decreases as the values 
of internal heat generation; Q increase for all cases 
considered. This shows that the effect of internal heat; Q in 
micropolar fluid is to enhance onset of convection either in 
rigid-free, rigid-rigid and free-free surfaces. This investigation 
revealed that the free-free surface is the most unstable system 
when we increase the value of Q. 
 

 
 

The variation values of Rayleigh number; Ra with wave 
number; a and Q = 0, 2, 4 in three different cases is shown in 
Fig. 1. The parameters chosen are N1 = 0.5, N3 = 2 and N5 = 1. 
It is found that the internal heat generation has a rapid impact 
on the stability of the system especially in the rigid-free and 
rigid-rigid surfaces. This can be proved by looking at the 
difference in the Rayleigh number; Ra where Ra number 
recorded between Q = 0 and Q = 2 are much larger compared 
with the value of Q = 4. It is proven that the internal heat 
generation is a destabilizing factor.  

 

 
Fig. 1 Variation of Ra with a for different values of Q 

 
Fig. 2 shows the plots of the critical Rayleigh number; Rac 

versus the coupling parameter; N1 for various values of 
internal heat generation; Q when N3 = 2 and N5 = 1. In every 
case considered, we found that the effect of increasing the 
internal heat generation is to decreases the critical Rayleigh 
number and thus destabilize the system. However, increasing 
the value of N1 helps to delay the onset of convection in the 
system. In each of these plots, the critical number increases 
with increasing of N1 for all values of Q in three different 
cases considered. N1 indicates the concentration of 
microelements, and increasing of N1 is to elevate the 
concentration of microelements number. When this happened, 
a greater part of the energy of the system is consumed by 
these elements in developing gyrational velocities of the fluid 
and thus delayed the onset of convection. 

TABLE II 
COMPARISON OF CRITICAL RAYLEIGH NUMBER FOR DIFFERENT TYPES OF 

LOWER-UPPER SURFACES 

Q 
Rac 

Rigid-Free       Rigid-Rigid             Free-Free  
0 2700           2863                       793 

0.1 2593           2826                       779 
0.2 2495           2789                       765 
0.3 2404           2754                       752
0.4 2319           2719                       740 
0.5 2240           2686                       726 
0.6 2166           2653                       716 
0.7 2097           2621                       705 
0.8 2032           2589                       694 
0.9 1972           2559                       683 
1.0 1914           2529                       673 

 

TABLE I 
COMPARISON OF CRITICAL RAYLEIGH NUMBER IN MICROPOLAR FLUID FOR 

N3 = 2, N5 = 1 

N1 

Rac 

Siddheshwar 
and Pranesh 

[16] 
Present Study 

Q = 0 Q = 0          Q = 1       Q = 3        Q = 5 
0.5 2700.06 2700.06     1914.64   1210.39      884.90 
1.0 4743.52 4743.52     3076.68   1806.84    1278.97 
1.5 8466.87 8466.87     4769.71   2545.56    1735.93 
2.0 16976.05 16976.05     7403.13   3471.99    2267.26 
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Fig. 2 The critical Rayleigh number; Rac as a function of coupling 
parameter; N1 for   different values of Q 

 
Fig. 3 is the illustration of the couple stress parameter; N3 

when N1 = 0.1 and N5 = 10 for various values of internal heat 
generation; Q. It is found that an increased of Q and N3 
decrease the values of Rac for all cases considered and 
therefore the system become more unstable. 

 

Fig. 3 The critical Rayleigh number; Rac as a function of couple 
stress parameter; N3 for different values of Q 

 
Fig. 4 shows the plot of Rac versus micropolar heat 

conduction parameter; N5 when N1 = 0.1 and N5 = 2 with 
various values of Q. Although the effect of internal heat 
generation is still to destabilize the system, an increasing of 
the micropolar heat conduction; N5, promotes stability in the 
system. The reason behind this is, when N5 increases, the heat 
induced into the fluid due to the microelements is also 

increased and thus reducing the heat transfer from the bottom 
to the top of the system. The decrease in heat transfer is 
responsible for delaying the onset of convection. Thus 
increasing N5 promotes stability in the micropolar fluid.  

 

 

Fig. 4 The critical Rayleigh number; Rac as a function of heat 
conduction parameter; N5 for different values of Q 

V. CONCLUSION 
The stability analysis of the Rayleigh-Benard convection in 

micropolar fluid with internal heat generation is investigated 
theoretically. It is found that the effect of internal heat 
generation; Q in the micropolar fluid has a significant 
influence on the Rayleigh-Benard convection and is clearly a 
destabilizing factor to make the system more unstable. For 
three cases considered, rigid-free, rigid- rigid and free-free 
surfaces, it is found that the critical values of the Rayleigh 
number in rigid-rigid surfaces are the highest. This show that 
the used of rigid-rigid surfaces can delay the onset of 
convection. The coupling parameter; N1, couple stress 
parameter; N3 and micropolar heat conduction; N5, has a 
significant effect on the onset of the Rayleigh-Benard 
convection. Although the effect of internal heat generation; Q 
is to destabilize the system, the increase of the microelement 
concentration; N1 and N5 helps to slow down the process of 
destabilizing.  
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